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Abstract: We reinterpret the JIMWLK/KLWMIJ evolution equation as the QCD

Reggeon field theory (RFT). The basic ”quantum Reggeon field” in this theory is the

unitary matrix R which represents the single gluon scattering matrix. We discuss the

peculiarities of the Hilbert space on which the RFT Hamiltonian acts. We develop a

perturbative expansion in the RFT framework, and find several eigenstates of the zeroth

order Hamiltonian. The zeroth order of this perturbation preserves the number of s —

channel gluons. The eigenstates have a natural interpretation in terms of the t — channel

exchanges. Studying the single s — channel gluon sector we find the eigenstates which

include the reggeized gluon and five other colored Reggeons. In the two (s — channel)

gluon sector we study only singlet color exchanges. We find five charge conjugation even

states. The bound state of two reggeized gluons is the standard BFKL Pomeron. The in-

tercepts of the other Pomerons in the large N limit are 1+ ωP = 1+ 2ω where 1+ ω is the

intercept of the BFKL Pomeron, but their coupling in perturbation theory is suppressed

by at least 1/N2 relative to the double BFKL Pomeron exchange. For the [27, 27] Pomeron

we find ω[27,27] = 2ω+O(1/N) > 2ω. We also find three charge conjugation odd exchanges,

one of which is the unit intercept Bartels-Lipatov-Vacca Odderon, while another one has

an interecept greater than unity. We explain in what sense our calculation goes beyond

the standard BFKL/BKP calculation. We make additional comments and discuss open

questions in our approach.
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1. Introduction

The theoretical approach to high energy scattering in the pre-QCD era was established by

V. Gribov and is known as Gribov‘s Reggeon Calculus [1]. The idea was further developed

and formulated as an effective Reggeon field theory (RFT) in Refs. [2, 3]. Since the advent

of QCD more than three decades ago great effort has been made to reformulate these ideas

in the framework of the QCD Lagrangian and thus to obtain RFT from first principles

as a bona fide high energy limit of the theory of strong interactions. Despite significant

progress this goal has not been achieved yet. Although various elements of RFT in QCD

have been available for some time, a coherent formulation of RFT is still not at hand.

The study of high energy limit in QCD began with the derivation of the Balitsky-

Fadin-Kuraev-Lipatov (BFKL) Pomeron [4], which was obtained as an infinite sum of
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perturbative diagrams computed in the leading logarithmic approximation (LLA). The

key element of the BFKL theory is the concept of gluon reggeization, which is proven both

in leading order (LO) [5, 6] and next to leading order (NLO) [7]. In particular, the BFKL

Pomeron is understood as a ”bound state” of two reggeized gluons in the t-channel.

The BFKL Pomeron has an intercept greater than unity and leads to scattering am-

plitudes that grow as a power of energy, hence violating the s-channel unitarity. It was

shortly realized that in order to restore unitarity, which undoubtedly has to be satisfied by

the full QCD amplitudes, one needs to consider t-channel states with more than just two

reggeized gluons. This was put forward by Bartels [8] and is today known as generalized

leading log approximation (GLLA). The important milestone result was a derivation of the

BKP equation, which governs (perturbative) high energy evolution of an amplitude due

to an exchange of an arbitrary but fixed number of reggeized gluons [9]. It was further

realized that the s-channel unitarity cannot be achieved without introducing transitions

between states with different number of reggeized gluons [10]. This is known as extended

GLLA (EGLLA) [11, 12]. The vigorous program of solving the BKP equations in the large

Nc limit has been pursued in recent years by Lipatov and Korchemsky with collaborators

[13 – 16].

The ideas put forward in [11] have been under intense investigation during the last

decade or so [17 – 25]. The transition vertex between 2 and 4 reggeized gluons was derived

in [11, 12, 19] and 2 → 6 in [20]. At present, this approach therefore gives elements

of an effective theory in terms of t-channel gluon states and transition vertices. These

elements have been put together in [25] by Braun into an effective theory of BFKL Pomerons

interacting via triple pomeron vertex of [11, 12]. This model is meant to describe nucleus-

nucleus collisions at high energies at LLA and large Nc. In principle it contains Pomeron

loops [26], even though they were not included in the semiclassical analysis of [25].

A different approach to high energy scattering in QCD has been developed in the last 10

years or so based on the ideas of gluon saturation. The seminal paper of Gribov, Levin and

Ryskin [10] put forward the idea that nonlinear effects in QCD evolution lead to saturation

of gluonic density at high enough energy. This gluon saturation than should restore the

s-channel unitarity which is badly violated by the BFKL Pomeron. The GLR equation -

the nonlinear evolution equation for gluon density in the double logarithmic approximation

was derived in [27]. The gluon saturation ideas have been further developed in a series

of papers by Mueller[28], who also introduced the notion of QCD dipoles as a convenient

basis for the discussion of high energy processes, and has related it to BFKL Pomeron.

The dipole version of the triple Pomeron vertex was obtained in Ref. [29, 30].

McLerran and Venugopalan recast the problem of saturation into that of studying non-

linearities of the classical Yang-Mills field theory directly in the path integral approach[31].

This provided an impetus for the formulation of the nonlinear QCD evolution approach to

high energy scattering[32 – 35]. This line of research lead to two equivalent formulations of

the nonlinear QCD evolution. One is formulated in terms of infinite hierarchy of evolution

equations for multiparton scattering amplitudes[32] - the so called Balitsky hierarchy; while

the other one is based on a functional evolution equation for the probability distribution

functional that determines the probabilities of various field configurations in the hadronic
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wave function - the so called JIMWLK equation[34, 35]. The relation between the two

formulations is roughly the same as between the infinite set of Dyson-Schwinger equations

and the second quantized Hamiltonian in a quantum field theory. In this paper we find it

more convenient to use the JIMWLK formulation, and will refer to the functional evolution

kernel as the JIMWLK Hamiltonian.

In the last year or so further progress has been made triggered by the realization that

the JIMWLK equation does not include Pomeron loops [36 – 39]. It was realized that the

JIMWLK Hamiltonian must be extended in such a way that makes it self dual under the

Dense-Dilute Duality transformation [40, 41]. Although the complete selfdual kernel has

not yet been derived, the dual of the JIMWLK Hamiltonian (which we will refer to as KL-

WMIJ) was shown to describe the perturbative evolution of a dilute hadronic wave function

[44]. The efforts to consistently include Pomeron loops into the evolution are ongoing and

some progress in this respect has been made [36, 42, 43, 45, 39, 46, 47, 41, 48 – 52, 26].

We note that there also has been earlier work on the subject of the high energy evolution

which is similar in spirit. In particular [53] considered an effective action for high energy

QCD with Wilson lines as effective degrees of freedom. The very same degrees of freedom

appear in more recent studies of Refs. [44, 47, 49, 51]. Yet another approach is due to

Lipatov and collaborators [54], who derived an effective action with both real and reggeized

gluons as effective degrees of freedom. This action respects the unitarity of full QCD, but

its complexity has so far precluded any progress in understanding its physical consequences.

Obviously establishing the direct relation between the JIMWLK formalism, which is

firmly based in perturbative QCD and the Gribov Reggeon field theory ideas should be

useful in unifying the two approaches and bringing closer the two ”wings” of the high energy

QCD community. Some attempts in this direction have been made starting with the classic

paper of Gribov, Levin and Ryskin [10], where the Pomeron fan diagrams were analyzed.

Most of the attempts in recent years have concentrated on the mean field approximation

to the dipole (large Nc) limit of high energy evolution [28 – 30, 24, 23], which is technically

a much simpler problem. These approaches converge to the Balitsky-Kovchegov (BK)

equation [32, 33] which sums fan-type Pomeron diagrams [10] in LLA and describes the

nonlinear corrections to the BFKL Pomeron[23] and the Odderon [55]. Beyond the large Nc

limit it is known that the leading perturbative order of the JIMWLK evolution reproduces

the BKP hierarchy [34] and the perturbative Odderon solution [56].

Still the relations studied so far are somewhat indirect and do not provide a complete

picture for translating between the JIMWLK and the Reggeon languages. The aim of the

present paper is precisely to fill in this gap. We demonstrate that the JIMWLK/KLWMIJ

Hamiltonian is nothing but the proper quantum field theoretical formulation of the Reggeon

field theory. Our approach in the present paper will be based on the KLWMIJ form of

the evolution, but as will become clear later on using JIMWLK in this context is entirely

equivalent. We note, that we do not address here the problem of Pomeron loops in the

JIMWLK framework, and therefore the Reggeon field theory we deal with is not the com-

plete one. However the mapping between the two languages is independent of the exact

form of the Hamiltonian and should also encompass the complete and as yet unknown self

dual generalization.
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This paper is structured as follows. In section 2 we briefly review the general setup of

calculating scattering amplitudes in the high energy eikonal approximation, the JIMWLK/

KLWMIJ evolution kernel and discuss the structure of the Hilbert space on which the

KLWMIJ Hamiltonian acts.

In section 3 as a warmup to the main part of the paper we discuss the dipole limit

of the JIMWLK evolution[47, 41]. We show that when the dipole model Hamiltonian is

treated as a quantum field theory, one can set up a formal perturbative expansion around

its quadratic part. The quadratic part preserves the dipole number, and so perturbative

solution can be given in a sector with fixed number of dipoles. Solving the quadratic

part itself one finds eigenfunctions which correspond to multi - BFKL Pomeron states,

with the eigenvalues given by the multiples of the BFKL trajectory. The process of the

diagonalization can be viewed (with some disclaimers) as finding such s - channel dipole

impact factors which couple exclusively to the n-Pomeron states in the t-channel.

Section 4 is the main part of this paper. Our aim here is to study the 2+1 dimensional

quantum field theory defined by the full KLWMIJ Hamiltonian and to relate its perturba-

tive spectrum with the results of the perturbative BFKL/BKP approach. This is of course

much more complicated than for the dipole model, as the basic degrees of freedom now

carry color indices. In fact the symmetry of this Hamiltonian is SU(N)⊗SU(N)⊗Z2⊗Z2.

One discrete Z2 factor corresponds to the charge conjugation symmetry of QCD (C-parity).

The second Z2 appears due to the symmetry between s and u channel scattering ampli-

tudes in the eikonal approximation. It naturally corresponds with the Reggeon signa-

ture extensively discussed in the literature. The SU(N) ⊗ SU(N) symmetry also has

a natural interpretation as an independent rotation of the incoming and outgoing color

indices of the gluon scattering matrix. In the perturbative regime, where the gluon scat-

tering matrix is close to unity, this symmetry is spontaneously broken down to diagonal

SUV (N). The disordered regime on the other hand corresponds to the black body limit,

since in physical terms it means that the color of the outgoing state after scattering is

completely uncorrelated with the color of the incoming one. Like in the dipole model

we develop perturbation theory around a ”perturbative vacuum state”, that is the state

in which the single gluon scattering matrix is close to unity. We develop an approx-

imation which we will refer to as the partonic approximation to the KLWMIJ Hamil-

tonian, which preserves the number of s channel gluons throughout the evolution. We

split the KLWMIJ Hamiltonian into the perturbative part and the interaction part. The

perturbative part can be solved separately in every sector with fixed number of s - chan-

nel gluons. However its structure is much more complicated than in the dipole model,

since it is not quadratic but rather quartic in the gluon creation and annihilation opera-

tors.

We solve the one gluon sector of the theory and find states which directly correspond

to reggeized gluon as well as other nonsinglet Reggeons. In our setup the color quantum

number of the state ”exchanged in the t channel” is easily identified as the representation

of the eigenstate with respect to the unbroken SUV (N) symmetry. We find the octet d-

Reggeon which is degenerate with the reggeized gluon as well as Reggeons corresponding

to other irreducible representations which can be obtained from multiplying two adjoints
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8 ⊗ 8 = 1 + 8A + 8S + 10 + 10 + 27 + R7
1. The reggeized gluon wave function and

trajectory are the same as in the BFKL calculation. The non octet Reggeons have all the

same spatial wave function and their trajectories are simple factors (proportional to the

second Casimir of the representation) multiplying the trajectory of the reggeized gluon.

Notably the singlet Reggeon exchange leads to energy independent contribution to cross

section.

We then go on to solve the two particle sector, but limit our solution to singlet ex-

changes in the t-channel. The structure we find can be easily understood in term of ”bound

states” of the Reggeons we found in the single s - channel gluon sector. We find states

which are even and odd under the charge conjugation and the Z2 signature symmetry. The

C-parity and signature even sector contains the bound state of two reggeized gluons - the

standard BFKL Pomeron with the usual wave function and trajectory. The other C-parity

and signature even states include the bound state of two octet d-Reggeons (which is degen-

erate with the BFKL Pomeron), as well as bound states of two 27 , two R7 Reggeons and a

(color)symmetric bound state of 10 and 10 Reggeons. All of those in the large Nc limit have

an intercept 1+ωP = 1+2ω where 1+ω is the intercept of the BFKL Pomeron. The 1/Nc

correction to the intercept of R7 Reggeon bound state is negative. The 1/Nc correction to

the intercept of the 27 Reggeon bound state is positive, making it the dominant exchange.

We show that the [8S , 8S ], [27, 27] and [R7,R7] Pomerons contain at least four gluons in

the t-channel, while the [10 + 10, 10 + 10] Pomeron contains at least six t - channel gluons,

making its coupling subleading in the dilute target limit.

In the C-parity odd sector we find three odderon states (for a recent review on Odderon

see ref. [58]). One of them is signature odd and corresponds to the bound state of the

reggeized gluon and the d-Reggeon antisymmetric in color space and coordinate space

separately. We show that the wave function of this state contains at least three gluons

in the t - channel and it is therefore identified with the Bartels-Lipatov-Vacca Odderon

(BLV) [59]. Another Odderon state is signature even. Its interpretation is that of the

antisymmetric bound state of the 10 and 10 Reggeons. Its wave function contains at least

six t-channel gluons. Correspondingly its trajectory is twice that of the BLV Odderon.

The intercept of both of these states is unity. The third state we find is quite peculiar

and interesting. It has a negative signature and can be thought of as a bound state of

the reggeized gluon and the d-Reggeon symmetric in color space and coordinate space

separately. Its intercept is greater than one and equal to that of the BFKL Pomeron. In

general this state has at least three t-channel gluons and thus its coupling is not suppressed

relative to the BLV Odderon. We show however that it decouples from a quark dipole.

In section 5 we discuss the relation of our calculation to the BFKL/BKP setup. The

BKP approximation arises as the limit of the partonic approximation to the KLWMIJ

Hamiltonian when each gluon emitted in the process of the evolution is allowed to interact

with the target only once. The partonic approximation is more general since it allows

multiple scatterings of the emitted gluons. We also discuss the way in which the ”composite

1We follow in this paper the notations and nomenclature of [57]. Thus the different representations of

the SU(N) group are labeled by the dimensionality of their counterparts in SU(3), except for R7 which

does not exist in the SU(3) case.

– 5 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

states” of many Reggeons contribute to the unitarization of the scattering amplitudes and

the limitations of this picture.

We conclude in section 6 with discussion of our results and open questions. Three

Appendices contain details of our calculations as well as a summary of useful properties of

projectors for SU(N) group.

2. High energy scattering: the general setup

The process we are interested in is the scattering of a highly energetic left moving projectile

consisting of gluons on a hadronic target. We are working in the light cone gauge natural

to the projectile wave function, A− = 0. In this gauge the high energy scattering matrix

of a single gluon projectile at transverse position x on the target is given by the eikonal

factor 2

S(x; 0, x−) = P exp{i

∫ x−

0
dy− T a αa

T (x, y−)} ; S(x) ≡ S(x; 0, 1) . (2.1)

where T a
bc = ifabc is the generator of the SU(N) group in the adjoint representation.

The field αT is the large A+ component created by the target color charge density. It

obeys the classical equation of motion and is determined by the color charge density of the

target ρT (x) via[60, 34, 35]

αa
T (x, x−)T a = g2 1

∂2
(x − y)

{

S†(y; 0, x−) ρa
T (y, x−)T a S(y; 0, x−)

}

(2.2)

For a composite projectile which has some distribution of gluons in its wave function

the eikonal factor can be written in the form analogous to S(x), see [40]

ΣP [αT ] =

∫

DρP W P [ρP ] exp

{

i

∫ 1

0
dy−

∫

d2x ρa
P (x, y−)αa

T (x, y−)

}

(2.3)

with xi - the transverse coordinate. The quantity ρP (xi) is the color charge density in the

projectile wave function at a given transverse position, while W P [ρ] can be thought of as

the weight functional which determines the probability density to find a given configuration

of color charges in the projectile. For a single gluon ρa(xi) = T aδ2(xi − x0
i ), and eq. (2.3)

reduces to eq. (2.1).

The total S-matrix of the scattering process at a given rapidity Y is given by

S(Y ) =

∫

Dαa
T W T

Y0
[αT (x, x−)] ΣP

Y −Y0
[αT (x, x−)] . (2.4)

In eq. (2.4) we have restored the rapidity variable and have chosen the frame where the

target has rapidity Y0 while the projectile carries the rest of the total rapidity Y . Lorentz

invariance requires S to be independent of Y0.

The high energy evolution is generally given by the following expression:

d

dY
S =

∫

Dαa
T W T

Y0
[αT (x, x−)] χ

[

αT ,
δ

δ αT

]

ΣP
Y −Y0

[αT (x, x−)] . (2.5)

2In our convention the variable x− is rescaled to run from 0 to 1.
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Here χ stands for a generic Hermitian kernel of high energy evolution, which can be viewed

as acting either to the right or as Hermitian conjugated to the left:

∂

∂Y
ΣP = χ

[

αT ,
δ

δαT

]

ΣP [αT ] ;
∂

∂Y
W T = χ

[

αT ,
δ

δαT

]

W T [αT ] . (2.6)

As was shown in [40] in order for the total S-matrix to be Lorentz invariant and symmetric

between the projectile and the target, the evolution kernel χ must be self dual. That is it

has to be invariant under the Dense-Dilute Duality transformation

αa(x, x−) → i
δ

δρa(x, x−)
,

δ

δαa(x, x−)
→ −iρa(x, x−) (2.7)

However if one considers the situation where the target is large and the projectile is small,

the symmetry between the target and the projectile is irrelevant. In the limit when the

color charge density of the target is parametrically large (ρa = O(1/αs)) the kernel is given

by the JIMWLK expression [34, 35]

χJIMWLK = K̂x,y,z

{

2 tr

[

δ

δS†
x

T a Sx

]

Sab
z tr

[

Sy T b δ

δS†
y

]

(2.8)

− tr

[

δ

δS†
x

T a Sx

]

tr

[

δ

δS†
y

T a Sy

]

− tr

[

Sx T a δ

δS†
x

]

tr

[

Sy T a δ

δS†
y

]}

.

Kx,y,z ≡
αs

2π2

(z − x)i(z − y)i
(z − x)2(z − y)2

; K̂x,y,z f ≡

∫

x,y,z
Kx,y,z f(x, y, z) (2.9)

The functional derivatives in this expression do not act on Sz in the kernel.

Referring back to eq. (2.3) we see that ΣP [α] is the functional Fourier transform of

W P [ρ]. It thus follows that if ΣP evolves according to eq. (2.6)with the JIMWLK kernel,

W P [ρ] must evolve with the dual kernel, which we call KLWMIJ

∂

∂Y
W P = χKLWMIJ

[

ρ,
δ

δρ

]

W P [ρ] . (2.10)

with [44]

χKLWMIJ = K̂x,y,z

{

2 tr

[

δ

δR†
x

T a Rx

]

Rab
z tr

[

Ry T b δ

δR†
y

]

(2.11)

− tr

[

δ

δR†
x

T a Rx

]

tr

[

δ

δR†
y

T a Ry

]

− tr

[

Rx T a δ

δR†
x

]

tr

[

Ry T a δ

δR†
y

]}

.

where the ”dual Wilson line” R is defined as

R(z)ab =

[

P exp

∫ 1

0
dz−T c δ

δρc(z, z−)

]ab

(2.12)
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Just like in eq. (2.8) the functional derivatives with respect to R do not act on R(z). This

can be rewritten in the normal ordered form, that is with all derivatives acting only on

external factors.

χKLWMIJ = − K̂x,y,z :

{

− 2 tr

[

δ

δR†
x

T a Rx

]

Rab
z tr

[

Ry T b δ

δR†
y

]

+ tr

[

δ

δR†
x

T a Rx

]

tr

[

δ

δR†
y

T a Ry

]

+ tr

[

Rx T a δ

δR†
x

]

tr

[

Ry T a δ

δR†
y

]}

− K̂x,x,z

{

− 2Rab
z tr

[

T a Rx T b δ

δR†
x

]

+ 2N tr

[

δ

δR†
x

Rx

]}

: (2.13)

We will find it convenient to rewrite the KLWMIJ kernel in the following form

χKLWMIJ = − K̂x,y,z :

{

− 2 tr

[

δ

δR†
x

T a (Rx − Rz)

]

Rab
z tr

[

(Ry − Rz)T b δ

δR†
y

]

+ tr

[

δ

δR†
x

T a(Rx − Rz)

]

tr

[

δ

δR†
y

T a(Ry − Rz)

]

+ tr

[

(Rx − Rz)T
a δ

δR†
x

]

+ tr

[

(Ry − Rz)T
a δ

δR†
y

]}

− K̂x,x,z

{

− 2Rab
z tr

[

T a (Rx − Rz)T b δ

δR†
x

]

+ 2N tr

[

δ

δR†
x

(Rx − Rz)

]}

: (2.14)

To arrive at this form we used explicitly the fact that R is a unitary matrix in the adjoint

representation. This form of the kernel is particularly convenient, since each term in

eq. (2.14) separately is ultraviolet finite. The complete KLWMIJ kernel is ultraviolet

finite, that is apparent ultraviolet divergencies at the point x = y, z = x cancel between

different terms in eq. (2.13). In the form eq. (2.14) this finiteness is explicit due to the

factors Rz − Rx etc.

Note that the KLWMIJ kernel possesses the global SUL(N)⊗SUR(N) symmetry. The

symmetry transformations rotate the left and right indices of the matrix R independently.

Furthermore there is a discrete Z2 symmetry Rab → Rba. This transformation interchanges

the color states of the incoming and outgoing gluons. Thus this symmetry reflects the s−u

crossing invariance of the QCD scattering amplitudes. The quantum number (charge)

associated with the Z2 symmetry goes under the name of signature. The fact that the

KLWMIJ Hamiltonian preserves this symmetry is nothing else but the Gribov‘s signature

conservation rule. Below we will see the signature conservation rule at work. The kernel is

also charge conjugation invariant. We will discuss the Z2 charge conjugation transformation

in detail in section 4.

An important point which we have not mentioned so far, is that W [ρ] can not be an

arbitrary functional. This issue has been discussed in detail in [44, 48] and more recently

in [61, 62]. The point is that the longitudinal coordinate x− is introduced in our formalism

as an ”ordering” coordinate. To begin with the transverse charge density ρ̂a(x) depends

– 8 –
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only on transverse coordinates. However ρ̂a(x) are quantum operators and therefore do

not commute between themselves. To emulate calculation of correlation functions of a

product of such operators in the projectile wave function we have introduced in [44] an

additional variable x− whose values simply track the order of appearance of the operator

factors of ρ̂a(x) in the product. The consistency requirement on W [ρ] is then such that

classical correlation functions calculated with W as the weight functional must reproduce

the relations between the correlators of ρ̂a(x) which follow from the SU(N) algebra satisfied

by ρ̂’s. We have shown in [48] that the functionals of the following form satisfy all the

required relations

W [ρ] = Σ[R] δ[ρ(x, x−)] (2.15)

with an arbitrary functional Σ which depends on the ”dual Wilson line” R only. eq. (2.15)

is a simple restriction on the Fourier transform of W . Inverting it we find

∫

dρ exp

{

i

∫

dx−d2x ρa(x, x−)αa(x, x−)

}

W [ρ] = Σ[S] (2.16)

with S defined as in eq. (2.1). Thus the Fourier transform of W must depend only on

the Wilson line S and not on any other combination of the conjugate variables α. This

of course has a very transparent physical interpretation. The functional Fourier transform

of W is precisely the projectile averaged scattering matrix for scattering on the ”external

field” α. The restriction eq. (2.15) simply means that this scattering matrix must be a

function of scattering matrices of individual gluons constituting the projectile, and does

not depend on any other property of the external field. The normalization of the functional

W is determined by requiring that for α = 0 the scattering matrix is equal to unity. Thus

Σ(R = 1) = 1,

∫

dρW [ρ] = 1 (2.17)

Further general properties of Σ follow from its identification as the projectile averaged

scattering matrix. Let us for simplicity concentrate on the dependence of Σ on S at

a particular transverse position x. Suppose the wave function of the projectile at this

transverse position has the form (we take there to be exactly one gluon at the point x)

|Ψx〉 =
N2−1
∑

a=1

Ca(x) |a, x〉 (2.18)

The scattering matrix operator when acting on Ψ multiplies the gluon wave function by

the matrix S[47]. We thus have

〈Ψx|Ŝ|Ψx〉 =

N2−1
∑

a,b=1

Ca(x)C∗
b (x) Sab(x) (2.19)

This generalizes easily to states with more than one gluon. Thus expanding the functional

Σ in Taylor series in R we obtain the most general form compatible with its interpretation
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as the projectile averaged scattering matrix

Σ[R] =

∞
∑

m=0

∞
∑

ni=1

[

C{a1}...{am}(x1, ..., xm)C∗
{b1}...{bm}(x1, ..., xm)

]

×Πm
i=1

[

Rai
1bi

1(xi)...R
ai

ni
bi
ni (xi)

]

(2.20)

where {a1} denotes the set a1
1, a

1
2, ..., a

1
n1

, etc. Simply stated this is the S-matrix of a state

whose quantum mechanical amplitude to have ni gluons with color indices ai
1, ..., a

i
ni

at the

transverse coordinate xi with i = 1, ...,m is C{a1}...{am}(x1, ..., xm). Thus for example the

coefficients of ”diagonal” terms with ai
j = bi

j must be positive, since they have the meaning

of probabilities to find the configuration with particular color indices in the projectile wave

function.

Equations eq. (2.15,2.17,2.20) determine the Hilbert space of the KLWMIJ Hamilto-

nian. We stress again that the norm in this Hilbert space as defined by eq. (2.17) is very

different from the standard quantum mechanical definition. The condition of positive prob-

ability density which in standard quantum mechanics is quadratic in the wave function, in

our Hilbert space is instead a linear condition eq. (2.20). This is a direct consequence of

the fact that expectation values in our Hilbert space are defined as

〈O[ρ]〉 ≡

∫

dρO[ρ] W [ρ] (2.21)

which is linear in the ”wave functional” W .

The problem of calculating the S matrix as a function of rapidity in the present ap-

proach is posed in the following way. First find eigenfunctions of the KLWMIJ Hamiltonian,

χKLWMIJ [R, δ/δR]Gq [R] = ωq Gq[R] (2.22)

The evolution of each eigenfunction is given by

Gq(Y ) = eωqY Gq (2.23)

Note that the eigenfunctions Gq[R] do not have to satisfy eqs.(2.17,2.20). Instead we can

take them to satisfy the standard Hilbert space normalization condition
∫

DRG∗
q[R]Gq[R] =

1. Next expand ΣP [R] at initial rapidity in this basis

ΣP
0 [R] =

∑

q

γq Gq[R] (2.24)

The expansion coefficients are given in the standard form

γq =

∫

DRG∗
q[R]ΣP

0 [R] (2.25)

The expansion coefficients γq are of course such that ΣP [R] is normalized according to

eq. (2.20).
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The total cross section at rapidity Y is

S(Y ) =
∑

q

γq eωq (Y −Y0)

∫

DS W T
Y0

[S(x)] Gq[S(x)] . (2.26)

Here we have assumed that the target weight functional W T depends only on S and have

substituted the integration over α(x, x−) in eq. (2.4) by the integration over S(x) (ditto in

eq. (2.25) with respect to R and δ/δρ). We note that the the unitarity of the scattering

amplitude requires (barring miraculous cancellations) nonpositivity of all ωq.

2.1 Correspondence with the standard RFT language.

Before setting out to study the approximate eigenstates and eigenvalues of the KLWMIJ

Hamiltonian we want to point out to direct parallels between our setup and the approach

to Reggeon field theory utilized for example in [11].

The standard RFT approach is based on a clear separation of s - and t channel with

factorization into impact factors and t-channel exchanges. The t - channel exchanges are

universal and do not depend on the nature of the projectile, while the impact factors are

determined by the projectile wave function. This has direct parallels in our approach.

The projectile averaged S - matrix eq.2.20) is determined entirely by the wave function

of the incoming projectile. As explained above, each factor R in the expression eq. (2.20)

corresponds to the scattering matrix of a single gluon in the projectile wave function. We

will refer to these gluons as s - channel gluons for obvious reasons. On the other hand

the eigenfunctions Gq[R] are completely independent of the projectile and are in this sense

universal. They are determined solely by the evolution kernel χKLWMIJ .

The eigenstates Gq[R] are the exact analogs of, and in fact should be understood as,

the t - channel exchanges. To see why this is the case, we note first that as is clear from

eq. (2.20), ΣP [R] carries two sets of indices. The left index labels the quantum numbers

of the incoming projectile state, and the right index labels the quantum numbers of the

outgoing projectile state. These sets of indices include all conserved quantum numbers of

the theory, in particular color and transverse momentum. In eq. (2.20) we have indicated

the color indices of each one of the incoming gluons ai
n, the total color representation of

the incoming projectile state being determined by the product of these representations

and analogously for the outgoing state. We assume for simplicity that the projectile state

belongs to an irreducible representation of the color SUL(N) group and the outgoing state

is in an irreducible representation of SUR(N). As for the ! transverse momentum, since

the transverse coordinates of all the gluons do not change during the interaction, ΣP

depends only on the difference of the initial and final transverse momenta k⊥−p⊥. On the

other hand the Hamiltonian χKLWMIJ has all the same symmetries as discussed earlier

in this section, and so the same quantum numbers are carried by its eigenstates Gq[R].

More precisely Gq[R] carry those quantum numbers which are not spontaneously broken

by the vacuum of χKLWMIJ . As we will see below the SUL(N)⊗SUR(N) group is broken

spontaneously down to the vector subgroup SUV (N). Thus the set of quantum numbers

q carried by Gq[R] includes the representation of SUV (N), the transverse momentum and

the discrete symmetry Z2 ⊗ Z2 as discussed above.

– 11 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

Referring to the calculation for the overlap coefficients γq in eq. (2.25) we observe,

that the integration measure DR is invariant under both SUV (N) and translations in the

transverse space R(x) → R(x + a). It is therefore obvious that the integral in eq. (2.25)

gives nonzero result only for those Gq which match the change in the appropriate quantum

numbers of the projectile wave function in the scattering event. In particular q⊥ = k⊥ −

p⊥ and the SUV (N) representation of Gq is precisely that which is needed to change

the SUL(N) representation of ΣP into the SUR(N) representation. Thus the quantum

numbers of Gq that contribute to eq. (2.24) are precisely those of the appropriate t -

channel exchanges that contribute to the scattering. In this sense the eigenstates Gq[R]

indeed represent the t - channel exchanges with the target.

Continuing this train of thought we also see that the expansion coefficients γq are

analogous to impact factors of [11], which describe the coupling of the t - channel state

with quantum numbers q to the s - channel projectile state. The analogy is indeed direct,

however one has to distinguish between the impact factor of exact eigenstate of χKLWMIJ

which is Gq, and impact factors in the standard sense as they are used in [11], namely

the coupling of the projectile to a fixed number of t - channel gluons. To understand this

distinction, we must realize that although an s - channel gluon is identified with the factor

R when it appears in ΣP of eq. (2.20), the t - channel gluon is not identified with a factor R

in Gq[R] but rather with a factor δ/δρa in its expansion. To see this we note that through

eq. (2.26) every factor of δ/δρa(x) in expansion of ΣP [R] becomes a factor of the color field

of the target αa(x) which is indeed naturally identified with the t - channel gluon. Thus

the perturbative coupling of a fixed number n of t - channel gluons to a given projectile is

given by the coefficient of the n-th order expansion of ΣP [R] in powers of δ/δρa(x). This

coefficient, which is just the n gluon impact factor for the given projectile, can be written

as

Dn
0 =

∫

Dρρa1(x1)...ρ
an(xn)W [ρ] (2.27)

The latter equality follows from the explicit form of W [ρ] eq. (2.15).

This establishes the relation between the main elements of the standard RFT language

and the basic quantities of our approach. To recapitulate: an s - channel gluon corresponds

to a single factor R in ΣP [R]; a t - channel exchange corresponds to an eigenstate Gq of

the Hamiltonian χKLWMIJ ; a coupling of a given exchange to the projectile state is given

by γq; a single t - channel gluon is represented by a single factor δ/δρa in the expansion

of Σ[R]; and an impact factor of a fixed number of t - channel gluons is given by Dn
0 ,

eq. (2.27).

We also note that we can define the ”rapidity dependent” function

Dn(Y ) =

∫

Dρρa1(x1)...ρ
an(xn)WY [ρ] (2.28)

which satisfies the evolution equation

d

dY
Dn =

∫

Dρρa1(x1)...ρ
an(xn)χKLWMIJ [ρ,

δ

δρ
]WY [ρ] (2.29)

This is the generalization of the 2 and 4-point functions considered in [12, 19, 75]. The

approach of [12, 19, 75] usually considers this type of functions with the projectile consisting
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of a single dipole and customarily splits Dn into the irreducible part and the reggeized part.

To make contact with this approach we consider in Appendix A the evolution of D4 for

the projectile containing a single dipole in the leading order in 1/Nc. We demonstrate

there that our approach in indeed equivalent to that discussed in [12, 19] and that the

decomposition into irreducible and reggeized parts appears naturally in our approach as

well.

The rest of this paper is devoted to solution of the eigenvalue problem eq. (2.22) in the

approximation where the KLWMIJ kernel is expanded around R = 1. This expansion can

be formulated since R = 1 is the classical minimum of the KLWMIJ kernel. Physically this

expansion is best thought of as the approximation of small target. For a small target the

overlap integral in eq. (2.26) is dominated by values of S close to unity. Thus the leading

contribution at early stages of evolution comes from the wave functions Gq[R] which are

large at R close to unity. Those can be studied by expanding the KLWMIJ kernel around

R = 1 and keeping only the homogeneous term in the expansion in (R − 1). Note however

that the condition that R is close to unity does not necessarily mean that we have to use

the standard perturbation theory in αs, as this closeness does not have to be parametric

in αs. We discuss this point in section 5. In the next section we will consider a simplified

problem of the KLWMIJ kernel reduced to its dipole limit.

3. Reggeons in the dipole model

A simplified version of the high energy evolution - the dipole model was introduced by

Mueller in [28]. It describes the leading high energy behavior in the large Nc limit as

long as the densities in the wave functions are not too large. As shown in [47] the dipole

evolution equation is obtained as a well defined limit of the JIMWLK evolution. We can

define the projectile dipole ”creation operator” s and the target dipole ”creation operator”

r:

s(x, y) ≡
1

Nc
Tr[S†

F (x)SF (y)] ; r(x, y) ≡
1

Nc
Tr[R†

F (x)RF (y)] (3.1)

where F indicates the fundamental representation. The term ”creation operator” is not

mathematically perfect - it would be more appropriate to call it the ”dipole field”, since it

is Hermitian. We will nevertheless keep to the tradition of calling it the creation operator

in this paper. The ”annihilation operators” in this parlance are δ
δs and δ

δr for projectile

and target respectively.

If the target weight function is a function of s only, that is W T = W T [s], the action

of the JIMWLK kernel on it in the large Nc limit is equivalent to the action of the dipole

kernel [47] (see also [63]):

χJIMWLK W T [s] = χdipole
s

[

s,
δ

δs

]

W T [s] (3.2)

The dipole kernel was found in [64, 65] by reformulating the original Muller‘s model and

was later obtained directly from eq. (3.2) in [47]

χdipole
s

[

s,
δ

δs

]

=

∫

x,y,z
Mx,y,z [− s(x, y) + s(x, z) s(y, z)]

δ

δs(x, y)
(3.3)
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with M - the usual dipole emission probability

Mx,y,z =
ᾱs

2π

(x − y)2

(x − z)2 (y − z)2
(3.4)

eq. (3.2) is derived under the same assumption as the JIMWLK equation - namely

that the target is dense. The dual form of this kernel describes the evolution of a hadronic

state (be it a projectile or a target) which contains a small number of dipoles in its wave

function. This form is derived from the KLWMIJ kernel assuming that r is the only degree

of freedom in the wave function [41] (see also [66, 67]):

χKLWMIJ W [r] = χdipole
r

[

r,
δ

δr

]

W [r] (3.5)

The calculation of the cross section of a projectile on a target which both are made entirely

of dipoles is given in analogy with eq. (2.26) by

SD(Y ) =
∑

q

γq eωq (Y −Y0)

∫

Ds W T
Y0

[s(x, y)] gq[s(x, y)] . (3.6)

where the wave functions gq satisfy

χdipole
r [r,

δ

δr
] gq[r] = ωq gq[r] (3.7)

We start by expanding the dipole Hamiltonian around the classical solution r = 1. Let

us denote the dipole creation an annihilation operators by3

d† ≡ 1 − r ; d ≡ −
δ

δr

The dipole Hamiltonian is

χdipole = H0 + HI (3.8)

The free Hamiltonian H0 is quadratic in the creation and annihilation operators

H0 =

∫

x,y,z
Mx,y,z

[

− d†(x, y) + d†(x, z) + d†(z, y)
]

d(x, y) (3.9)

The Hamiltonian of the interaction HI is given by

HI = −

∫

x,y,z
Mx,y,z d†(x, z) d†(y, z) d(x, y) (3.10)

We now consider the spectrum of the free Hamiltonian H0. There are of course no new

results in this calculation. It only serves to establish in a very simple setting the corre-

spondence between the Reggeon field theory and the KLWMIJ/JIMWLK approach that

we want to make explicit in this paper. This is an easy exercise, since the Hamiltonian is

very similar to harmonic oscillator. The vacuum of H0 is |0〉 such that d|0〉 = 0. The wave

3Although we are abusing notation slightly by calling both r and 1− r the dipole creation operator, we

hope this does not cause confusion.
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functional of this state is simply a constant which does not depend on r. The first exited

state contains one dipole and is a superposition of the basis states d†(x, y)|0〉. We take it

in the form

gq =

∫

x,y

1

(x − y)4
ψq(x, y) d†(x, y) |0〉 (3.11)

Acting on gq by H0 we find that the wave function ψq should satisfy the BFKL equation

∫

z
Mx,y,z [−ψq(x, y) + ψq(x, z) + ψq(y, z)] = ωq ψq(x, y) (3.12)

The eigenfunctions should vanish when two transverse coordinates coincide, since the dipole

of zero size is indistinguishable from vacuum. Solutions of the BFKL equation which satisfy

this condition, the so called Moebius invariant solutions, are well known. They are the

eigenfunctions of the Casimir operators of conformal algebra [68]

ψq(x, y) = En,ν(x − ρ, y − ρ) =

(

(x − y)

(x − ρ) (y − ρ)

)
1+n

2
+iν (

(x − y)∗

(x − ρ)∗ (y − ρ)∗

)
1−n

2
+iν

(3.13)

where the complex coordinate x is defined as x = x1+ix2 The index q denotes the conformal

spin n, ν, as well as the degeneracy vector ρ. The eigenvalues are

ωq = 2 ᾱS χ(n, ν), (3.14)

where

χ(n, ν) = ψ(1) −
1

2
ψ

(

1 + |n|

2
+ iν

)

−
1

2
ψ

(

1 + |n|

2
− iν

)

, (3.15)

These wave functions satisfy the completeness relation [68]

(2π)4 δ(x − x̄) δ(y − ȳ) = (3.16)

=
∞

∑

n=−∞

∫ ∞

−∞
dν

∫

d2ρ
16

(

ν2 + n2

4

)

|x − y|2 |x̄ − ȳ|2
En,ν(x − ρ, y − ρ)En,ν ∗(x̄ − ρ, ȳ − ρ)

By diagonalizing H0 in the one dipole Hilbert space we have found such a linear combination

of s - channel dipole states which couples precisely to a given ”state” (fixed (n, ν)) on the

BFKL Pomeron trajectory. Note that this does not mean that the coupling of this state to

the projectile and the target is via a two gluon exchange only. Since the wave functional gq

depends linearly on r, and r has all order expansion in powers of δ/δρ, the coupling of gq

to the target is the full eikonal coupling which includes multiple scatterings. Nevertheless

this t - channel exchange with all its multiple scatterings evolves exponentially in rapidity

with a fixed exponent 2ᾱsχ(n, ν).

The exited states at the next level contain two ”reggeized dipoles”. Since in the dipole

model all dipoles are treated as independent degrees of freedom and [d†(x, y), d(u, v)] =

−δ2(x − u)δ2(y − v), we immediately infer the two dipole spectrum

H0 gq1,q2 = [ωq1 + ωq2] gq1,q2 (3.17)
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where

gq1,q2 =

∫

x,y,u,v

1

(x − y)4 (u − v)4
ψq1(x, y)ψq2(u, v) d†(x, y) d†(u, v)|0〉 . (3.18)

These eigenstates correspond to double Pomeron exchange. This corresponds to the

leading order in Nc BKP state (which couples to a projectile consisting of two dipoles)

which contains four reggeized gluons in the t-channel. Note however that as discussed in

section 2, this exchange does not contain a fixed number of t-channel gluons, but rather

includes all multiple scatterings. If we chose the projectile Σ to be equal to gq1,q2, such

a projectile state in the present approximation would not interact via a single Pomeron

exchange, but only via the double Pomeron exchange. As discussed at the end of this

section however, such a projectile is not physical, as its wave function contains negative

probabilities.

The generalization to the multi-dipole states is straightforward. The eigenstates and

eigenvalues of H0 are

H0 gq1,...,qn = [ωq1 + ... + ωqn ] gq1,...,qn (3.19)

with

gq1,...,qn =

∫

{xi},{yi}

ψq1(x1, y1)

(x1 − y1)4
...

ψqn(xn, yn)

(xn − yn)4
d†(x1, y1)...d

†(xn, yn)|0〉 (3.20)

Thus the dipole limit of the KLWMIJ hamiltonian reproduces the leading large Nc

spectrum of the noninteracting multipomeron exchanges. Note that the eigenstates contain

all the nonforward BFKL amplitudes and thus scattering amplitudes at arbitrary transverse

momentum transfer.

This of course is simply a recasting of well known results in our framework. It is

therefore also obvious that the expansion around r = 1 violates unitarity. While the

complete dipole model Hamiltonian is unitary and when solved nonperturbatively must

lead to unitary S - matrix4, the Hamiltonian H0 does not. One manifestation of this

is the fact that the BFKL trajectory has an intercept greater than one, and therefore

the scattering amplitudes grow without bound. The same fact also manifests itself in a

somewhat different fashion. In particular the eigenfunctions that we found are all (except

for the vacuum) zero norm states with respect to the norm defined in eq. (2.17). All the

wave functions are homogeneous polynomials of 1 − r, and thus they all, except for the

constant vacuum wave function, vanish at r = 1.

Put in other words, when interpreted as dipole states in the s-channel, gq contain

negative probabilities. The condition eq. (2.20) can be adapted to the dipole limit in a

straightforward manner. It states that in the expansion of Σ[r] in powers of r(x, y), individ-

ual coefficients represent probability densities of finding a particular dipole configuration,

and thus all coefficients of r(x1, y1)...r(xn, yn) must be positive. On the other hand consider

4Within additional approximation of no target correlations (see [47] for alternatives), finding a non-

perturbative solution of the dipole Hamiltonian is equivalent to solving the non-linear BK equation. This

question was addressed in many papers [70, 24, 71 – 73]. The result is consistent with the unitarity constraint.
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the first excited state wave function

gq =

∫

x,y

1

(x − y)4
ψq(x, y) [r(x, y) − 1] . (3.21)

The coefficient function ψq as defined in eq. (3.13) is not real. Due to the degeneracy

of the eigenvalues eq. (3.15), n → −n and ν → −ν one can construct real combinations

of these functions ψn,ν + ψ−n,−ν and i(ψn,ν − ψ−n,−ν). These combinations however are

not strictly positive. Thus if we were to take Σ[r] = gq[r], this wave function would have

negative probabilities to find the dipole at some points (x, y). The only eigenfunction

which is positive everywhere is the one that corresponds to the forward scattering BFKL

amplitude, n = ν = 0. Even this one however contains negative probabilities. Since g0 is

proportional to r − 1 and not r, it has positive probability to contain one dipole (at any

position (x, y)) but an overall negative probability to contain no dipoles at all. Similarly,

the second excited state has a positive probability to contain two dipoles and no dipoles,

but a negative probability to contain a single dipole.

This curious behavior is not by itself a problem, since one can construct a positive

norm state with all positive probabilities at the initial rapidity by taking appropriate

superposition of these zero norm states and the vacuum state. This is also the reason why

we have to keep all the eigenfunctions that we have found in the preceding analysis and

not just the one with n = ν = 0 - we need to superpose all of them in order to construct

an arbitrary positive definite scattering matrix Σ[r]. The problem arises however at later

times (higher rapidities) since the BFKL intercept is greater than one. The S-matrix at

later times will be dominated entirely by the component in the superposition which has the

largest eigenvalue, and this state by itself contains negative probabilities. The linearized

evolution therefore preserves the overall norm of the state (since Σ[1] does not evolve

with rapidity), but generates probabilities which are greater than unity as well as negative

probabilities. Thus unless the unitarizing corrections due to the triple Pomeron vertex are

taken into account, the evolution violates unitarity not just by driving the value of the total

scattering probability above unity, but also by making the probabilistic interpretation in

the s - channel impossible.

We certainly believe that this is an artifact of the perturbative approach and that the

interaction will cure this problem when consistently taken into account. It is not our aim

in this paper to solve nonperturbatively the KLWMIJ hamiltonian (we wish we could!) but

rather to relate the perturbative approach to the standard techniques which also operate

with nonunitary amplitudes. We therefore will not have much to say about the effects of

the interaction. We only note that the first perturbative correction to the single Pomeron

state can be obtained by acting on the state by the perturbation Hamiltonian HI :

HI gq =

∫

x,y,z

Mx,y,z

(x − y)4
ψq(x, y) d†(x, z) d†(y, z) |0〉 . (3.22)

This state can be projected onto a two-particle state gq1,q2. The resulting matrix element

is

〈gq1,q2|HI |gq〉 = −

∫

x,y,z

Mx,y,z

(x − y)4 (x − z)4 (y − z)4
ψq(x, y)ψ∗

q1
(x, z)ψ∗

q2
(y, z) (3.23)
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eq. (3.23) is the well known result for the first unitarity correction to the BFKL Pomeron

due to the QCD triple Pomeron vertex. In the dipole model and beyond this has been

studied in detail in Refs. [11, 12, 18, 19, 28, 30, 23]. It is a satisfactory feature of the

present approach that this result is reproduced automatically.

We therefore conclude that the dipole model Hamiltonian considered as a second quan-

tized 2+1 dimensional field theory describes in the perturbative expansion the large Nc

BFKL Pomeron with the self-interaction given by the triple pomeron vertex. It is tempt-

ing to think about a given eigenstate of H0 as a ”projectile” with specific configuration

of dipoles in the s-channel chosen so that it interacts with any target only by the specific

n-Pomeron exchange. The wave function of such a projectile however contains negative

probabilities. It is thus more correct to think about a given eigenstate gq as of a t - channel

exchange, as discussed in section 2. Any physical ”projectile” with all positive probabilities

can be constructed at initial rapidity as a superposition of these eigenstates. The evolution

generated by H0 however generates negative probabilities at large enough rapidity.

In the next section we perform a similar analysis of the full KLWMIJ Hamiltonian

beyond the dipole limit.

4. Reggeons in QCD

4.1 The Hamiltonian

We start with the KLWMIJ Hamiltonian written in the form eq. (2.14). It has a classical

minimum at R = 1 and in the rest of this section we consider expansion around this

configuration. Introducing R̃ = 1 − R we write

χKLWMIJ = H0 + HI (4.1)

The “free” Hamiltonian H0 is the part homogeneous in R̃ δ
δR̃

, and it naturally splits into

the real and virtual parts, the latter appearing due to the normal ordering in eq. (2.13).

H0 = HR
0 + HV

0 (4.2)

The real part is

HR
0 = − K̂x,y,z

{

− 2 tr

[

δ

δR̃†
x

T a (R̃x − R̃z)

]

tr

[

(R̃y − R̃z)T a δ

δR̃†
y

]}

+

tr

[

δ

δR̃†
x

T a (R̃x − R̃z)

]

⊗ tr

[

δ

δR̃†
y

T a (R̃y − R̃z)

]

+ tr

[

(R̃x − R̃z)T a δ

δR̃†
x

]

tr

[

(R̃y − R̃z)T a δ

δR̃†
y

]}

(4.3)

The virtual part is

HV
0 = − 2

∫

x,z
Kx,x,z

{

− tr

[

T a (R̃x − R̃z)T a δ

δR̃†
x

]

+ N tr

[

(R̃x − R̃z)
δ

δR̃†
x

]}

(4.4)
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The interaction Hamiltonian has the form

HI = − K̂x,y,z tr

[

δ

δR̃†
x

T a (R̃x − R̃z)

]

R̃am
z R̃bm

z tr

[

(R̃y − R̃z)T b δ

δR̃†
y

]

+

∫

x,z
Kx,x,z

(

R̃ab
z + R̃ba

z

)

tr

[

T a (R̃x − R̃z)T b δ

δR̃†
x

]

. (4.5)

Here we have used the unitarity of the matrix R to rewrite the first term in the form which

looks like a 2 → 4 vertex. We have dropped the normal ordering sign in the above formulae

for notational simplicity, but all the functional derivatives are understood not to act on

the fields R̃ in the kernels themselves.

We view the Hamiltonian eqs.(4.1,4.3,4.4,4.5) as defining the fully second quantized

Reggeon Field Theory. In the following we will refer to it as either KLWMIJ or RFT

Hamiltonian.

As noted in section 2, in principle the separation of the full RFT Hamiltonian into a

free term and an interaction is not unique due to the unitarity of the matrix R. Our guide

is to define this split in such a way that H0 and HI are separately ultraviolet and infrared

safe. We discuss this point further in section 6.

Analogously to section 3, we can think of R̃ and δ/δR̃† as s - channel gluon creation

and annihilation operators respectively. Consistently with this terminology we will call the

approximation based on the Hamiltonian H0 in eq. (4.2) - partonic approximation to RFT.

In this approximation the s - channel gluons emitted throughout the evolution scatter

independently and the scattering amplitude of a gluon configuration is taken to be the sum

of scattering amplitudes of the individual gluons. This is encoded in the Hamiltonian H0

since it is homogeneous in the gluon creation operator and thus preserves the number of

s - channel gluons that contribute to the scattering amplitude throughout the evolution.

We will discuss the physics of this approximation as well as its relation to the standard

BFKL/BKP approach in the next section.

The vacuum of the free Hamiltonian H0 is clearly the state |0〉 such that

δ

δR̃†
|0〉 = 0 (4.6)

This is the state with no gluons and corresponds to a trivial ”empty” projectile. The

higher states are obtained from the vacuum by successive action of the creation operator R̃.

Although H0 is homogeneous in the creation and annihilation operators, it is significantly

more complicated than the corresponding Hamiltonian in the dipole model. It contains

not only terms of the type a†a, but also a†a†aa, and its spectrum is therefore not simply

that of a harmonic oscillator.

In the diagonalization of H0 we will find very helpful to use its symmetries. The

expansion around R = 1 breaks the SUL(N) ⊗ SUR(N) symmetry of the full KLWMIJ

kernel down to the diagonal SUV (N):

R(x) → U † R(x)U . (4.7)
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Thus the eigenstates of H0 can be classified according to the representations of this SUV (N)

group. As discussed above, and as we will see explicitly below, the representation of

SUV (N) corresponds to the color quantum number of the t - channel exchange.

Another interesting symmetry of H0 and HI is the discrete symmetry

R(x) → R†(x) (4.8)

This transformation interchanges the row and column indices of the matrix R. Physically

the first index of the matrix R corresponds to the color index of the incoming s - channel

gluon, while the second index to the color of the outgoing s - channel gluon. Thus the inter-

change of these indices interchanges the s and u channels. The discrete symmetry eq. (4.8)

can be therefore identified with the signature discussed in the context of the Reggeon

theory5. The eigenstates of H0 fall into even and odd states under this transformation.

Finally another discrete symmetry of the KLWMIJ Hamiltonian is charge conjugation

(C-parity). In QCD the action of the charge conjugation symmetry is conventionally defined

as

Aa
µτa → −(Aa

µτa)∗ (4.9)

where τa are the generators of the fundamental representation. This translates into the

following transformation of the fundamental eikonal factor

RF (x) → R∗
F (x) (4.10)

while the adjoint eikonal factor transforms as

Rab(x) → Cac Rcd(x)Cdb (4.11)

Here the matrix C is the diagonal matrix which can be conveniently written as

Cab = 2 tr(τa τ∗b) (4.12)

The transformation eq. (4.11) flips the sign of the matrix elements of R in rows and columns

whose indices correspond to the imaginary fundamental generators τa. This symmetry is

also unbroken by the configuration R = 1.

4.2 One-particle state: reggeized gluon and other Reggeons

In this subsection we discuss the ”one particle states” - the eigenstates of H0 linear in the

s- channel gluon creation operator R̃. We will use the terms ”one particle state”, ”two

particle state” etc. in this sense throughout the rest of the paper.

The one particle eigenstates represent t - channel exchanges which in the partonic

approximation couple directly to the one s - channel gluon states. We are looking for

one-particle eigenstates of the form

Gλ
q =

∫

x
Ψq(x)ηλ

cd R̃cd(x) |0〉 (4.13)

5We dub “signature” the behavior of the amplitude under the s − u crossing. This is not quite the

standard definition of the signature factor as used in the partial wave analysis, but coincides with it for

scalar exchanges. We thank Genya Levin for pointing this to us.
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The states in this sector are multiplets of the SUV (N) symmetry, and we use cumulative

index λ to label both the representation and the particular state vector inside the repre-

sentation. The tensors ηλ
ab essentially are projectors from the product of two adjoints to

the representation λ, see below.

The eigenvalue problem we are to solve is

H0 Gλ
q = βq(λ)Gλ

q (4.14)

First we compute the action of H0 on R̃

H0 R̃cd
x = HV

0 R̃cd
x = 2

∫

z
Kx,x,z

{

(T a T b)cd (R̃ab
x − R̃ab

z ) − N (R̃cd
x − R̃cd

z )
}

(4.15)

The color structure can be easily diagonalized. To do that we need solutions of (no sum-

mation over λ is implied)

(T a T b)cd ηλ
cd = N kλ ηλ

ab (4.16)

This is solved using the decomposition of the product of two generators into the projectors

of SU(N) representation (see eq. (C.22) of the Appendix C)

(T a T b)cd = N
∑

i

λi P
i ab
cd = N

(

P [1] +
1

2
P [8A] +

1

2
P [8S ] −

1

N
P [27] +

1

N
P [R7]

)ab

cd

,

(4.17)

The explicit form of the projectors P is given in the Appendix C. We follow in this paper

the notations and nomenclature of [57]. Thus the different representations are labeled by

the dimensionality of their counterparts in SU(3), except for R7 which does not exist in

the SU(3) case. Clearly choosing η = P [λ] solves equation (4.16) for any representation λ

that can be constructed from the product of two adjoints. Thus we have seven eigenfunc-

tions corresponding to 1, 8A, 8S , 10, 10, 27, and R7 representations of SUV (N) with the

eigenvalues

λ1 = 1, λ8A
=

1

2
, λ8S

=
1

2
, λ10 = λ10 = 0, λ27 = −

1

N
, λR7 =

1

N
. (4.18)

Note that each projector P [λ] corresponds to a t-channel exchange in the color repre-

sentation λ. This interpretation follows directly from the fact that R̃ is the T -matrix of

the s-channel gluon. For P [λ] the color indices of the incoming and outgoing gluon are

projected onto the representation λ. Physically this can happen only due to an exchange

with the target by an (t - channel exchange) object in this representation (Fig. 1).

Once the color structure is diagonalized, the equation for Ψq follows:

− 2N (1 − λ)

∫

z
[ Ky,y,z Ψq(y) − Kz,z,y Ψq(z)] = βq(λ)Ψq(y) (4.19)

Substituting Ψ in the form of a plane wave Ψq(y) = ei q y we get

−
αs N

π2
(1 − λ) ei q y

∫

µ
d2k

q2

k2 (q − k)2
= βq(λ) ei q y (4.20)
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Figure 1: t-channel projection of Wilson lines.

where µ is the infrared cutoff. The momentum q is the momentum transfer in the scattering

process. For the eigenvalue βq we obtain (ᾱs ≡ αs N/π)

βq(λ) = −
ᾱs

π
(1 − λ)

∫

µ
d2k

q2

k2 (q − k)2
≈ − ᾱs (1 − λ) ln

q2

µ2
(4.21)

In the last equality we have assumed q À µ. For q → 0 the eigenvalue vanishes quadratically

with q:

βq(λ) →q→0 ᾱs (1 − λ)
q2

µ2
(4.22)

Note that the coefficient 1 − λ is simply proportional to the second Casimir of the given

representation (tabl. 1):

2N (1 − λ) = C2 . (4.23)

eq. (4.21) provides an expression for the trajectory of the Reggeon in the channel with

given color exchange[11] (see also [74]). The R = 8A channel is special since it has the

quantum number of the gluon. Indeed we have

βq[8A] = −
αs N

2π
ln

q2

µ2
;

which is the standard reggeized gluon trajectory. We will refer to it as the reggeized gluon

or the f -Reggeon. Its signature is negative, since the projector P [8A]cdab is antisymmetric

under the exchange of a and b. The f -Reggeon has a positive signature ”brother” in the

R = 8S channel, which we will refer to as the d-Reggeon. Since λ8S
= λ8A

, its trajec-

tory is degenerate with that of the reggeized gluon, βq[8S ] = βq[8A]. The corresponding

wavefunctions are

G8A ab
q =

∫

x
ei q x fabk fkcd R̃cd(x) ; G8S ab

q =

∫

x
ei q x dabk dkcd R̃cd(x)

Thus in our approach the reggeized gluon is naturally identified with an eigenstate whose

eigenfunction is linear in the Wilson line R projected onto the antisymmetric octet repre-

sentation in the t-channel. Note however that the identification is not operatorial - we do

not have an operator in the Hilbert space which we could identify with Reggeized gluon.

The correspondence is rather on the level of the (perturbative) eigenstate of the KLWMIJ

Hamiltonian.
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Note that the singlet state in the t-channel (R = 1) does not contribute to the evolution

of the cross section. The scattering amplitude due to the exchange of this ”s-Reggeon”

is flat with energy since λ1 = 1. Note also that the Reggeons corresponding to 10 and

10 exchanges are degenerate. Thus if the coefficient of the projector P 10 in the expansion

of Σ[R] is equal to that of P 10 at initial rapidity, it remains so throughout the evolution.

Nevertheless the 10 and 10 Reggeons appear as distinct eigenstates of the RFT Hamiltonian.

The signature of the 10 and 10 Reggeons as well as of the reggeized gluon is negative

since the respective projectors are odd under the exchange of one pair of indices. The

other three Reggeons - 8S , 27 and R7 have positive signature. Different types of Reggeons

(including the singlet) and their relation to signature were discussed in [11, 12, 75].

The eigenvalue at q2 → 0 for all the Reggeons vanishes. For the reggeized gluon in

the present approach this is the consequence of the Goldstone theorem. Our expansion

breaks spontaneously the SUL(N)⊗SUR(N) symmetry down to SUV (N). As in any other

quantum field theory, in the RFT such breaking requires the appearance of N2−1 signature

odd Goldstone bosons in the adjoint representation of SUV (N). These are precisely the

quantum numbers of the reggeized gluons. The fact that all the other Reggeons also have

vanishing eigenvalue at q2 = 0 from this point of view is surprising. It may signal the

presence of a larger broken symmetry group which we were not able to identify.

The effect of the interaction Hamiltonian HI is to mix the one and two Reggeon states.

In particular acting by the perturbation HI on the one Reggeon state sector we obtain:

HI Gλ
q = − ηλ

ab

∫

x,z
Kx,x,z R̃αβ

z

[

Tα (R̃x − R̃z)T β
]

ab
Ψq(x) (4.24)

Projecting the above state onto the analog of the noninteracting two-particle state using

the projector

Pλ1λ2
q1,q2

≡

∫

x
ηλ1

cd

δ

δR̃cd(x)
Ψ∗

q1
(x)

∫

y
ηλ2

ab

δ

δR̃ab(x)
Ψ∗

q2
(y)

we obtain

Pλ1λ2
q1,q2

HI Gλ
q = ηλ1

ab ηλ2
cd ηλ

mn T a
mc T b

dn V1g→2g(q; q1, q2) (4.25)

with the Reggeon ”splitting vertex” given by

V1g→2g(q; q1, q2) = −

∫

x,y
Kx,x,y

{

Ψ∗
q1

(x)Ψ∗
q2

(y) [Ψq(x) + Ψq(y)] − 2Ψ∗
q1

(y)Ψ∗
q2

(y)Ψq(x)
}

= −
αs

2π

[

ln
q2
1

µ2
+ ln

q2
2

µ2

]

δ2(q − q1 − q2) (4.26)

In accordance with the signature conservation not all of the transition are allowed. For

example the f -Reggeon mixes only with the f and d states.

4.3 Two-particle state

Our next task is to find eigenstate in the two particle sector. We will limit ourselves to

the SUV (N) singlet states which correspond to color singlet exchanges in the t-channel.

It is convenient to label these states G
S (CP )
q by their eigenvalues with respect to the
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Figure 2: s-channel projection of two Wilson lines.

discrete symmetries: signature S, charge conjugation C and space parity P which for two

particle states is equivalent to the symmetry of the eigenfunction with respect to transverse

coordinate exchange. The index q cumulatively denotes the rest of the quantum numbers.

We will refer to the C-parity even eigenstates as Pomerons, while to the C-parity odd

eigenstates as Odderons. The most general Pomeron state has the form

G+ (++)
q =

6
∑

i=1

P i bd
ac

∫

u,v
R̃ab(u) R̃cd(v)Ψi

s(u, v) |0〉; (4.27)

Here the projectors P i ≡ P [Ri] are the same as in the previous subsection and the index

i runs over representations 1, 8A, 8S , 10 + 10, 27, R7. We have defined the projector onto

the representation 10 + 10 as [R10 + R10]. Note that the combination P 10 − P 10 does not

appear in the Pomeron sector, since it has negative C-parity.

In the Odderon sector we have three possible sets of eigenstates which all differ in at

least one quantum number:

G
− (−−)
q = Z+ bd

ac

∫

u,v
R̃ab(u) R̃cd(v)Φ−(u, v) |0〉 ;

G
+ (−−)
q = Z− bd

ac

∫

u,v
R̃ab(u) R̃cd(v)Φ+(u, v) |0〉 ;

G
− (−+)
q = [P 10 − P 10]bdac

∫

u,v
R̃ab(u) R̃cd(v)Ψ−

s (u, v) |0〉 ; (4.28)

The additional tensors Z± are defined as (see Appendix C).

i(Z±
s )ab

cd =
i

2

(

fbakdkcd ± dbakfkcd

)

(4.29)

The projectors P i are symmetric under the exchange of indices P i bd
ac = P i db

ca while the

tensors Z± are antisymmetric under the exchange of both pairs of indices. Therefore the

Ψi
s(u, v) and Ψ−

s (u, v) are functions symmetric under the interchange of u and v (P = +1)

while Φ±(u, v) are antisymmetric functions (P = −1).

eq. (4.27) and (4.28) have a simple interpretation from the s-channel point of view (Fig.

2). In G
+ (++)
q , two incoming gluons with indices ac are projected onto representation Ri.

The two outgoing gluons (with indices bd) are projected onto the same representation

Ri. Thus the color representation of the two gluon state remains unchanged during the

propagation through the target. Additionally the invariant tensor P i projects the product

of the incoming and the outgoing representations Ri onto a color singlet. Thus these
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amplitudes correspond to a color singlet exchange in the t-channel. It can be easily checked

that these eigenstates are even (C = +1) under the charge conjugation transformation

eq. (4.11). The tensors P i are symmetric under the interchange of the incoming and

outgoing indices; P i bd
ac = P i ac

bd . Hence all G
+ (++)
q are positive signature eigenstates (S =

+1).

In G± (−−), the incoming and outgoing representations are both adjoints, but they have

different charge conjugation properties. These eigenstates correspond to the change of 8A

into 8S (or vice versa) during the interaction with the target. Again one can straightfor-

wardly check that both G± (−−) eigenstates are odd under the charge conjugation eq. (4.11).

They are therefore both associated with the Odderon exchange. The properties of these

two sets of eigenstates under the signature transformation are however different. The ten-

sor Z+ is odd under the interchange of the incoming and outgoing indices and therefore

the set G− (−−) contains negative signature eigenstates6. These correspond to the standard

signature odd odderon exchange. On the other hand the tensor Z− is even under the in-

terchange of the incoming and outgoing indices. The eigenstates G+ (−−) thus correspond

to a signature even Odderon exchange.

The set of eigenstates G− (−+) is a peculiar one. These states have negative signature

and negative charge conjugation but are described by a symmetric wavefunction. Because

the Hamiltonian preserves parity, charge conjugation and signature, the four sets of eigen-

states of eqs. (4.27,4.28) do not mix.

The s-channel representation eqs.(4.27,4.28) is natural for discussing the scattering

process from the s channel point of view. It emphasis the color structure of the gluon

”dipole” state which propagates in the s - channel. It is however also instructive to consider

an alternative t-channel representation (Fig. 3). Instead of projecting the color indices of

the two incoming gluons into a definite color representation we can project the incoming

and outgoing indices of the same gluon. This corresponds to writing the wave function of

the eigenstates in the form

G+ (++)
q =

∑

i

P i cd
ab

∫

u,v
R̃ab(u) R̃cd(v)Ψi

t(u, v) (4.30)

In this expression a given term in the sum eq. (4.30) represents the process whereby each one

of the s-channel gluon exchanges color representation Ri with the target, and additionally

the two Ri representations in the t-channel form an overall color singlet. The two expression

eq. (4.27) and eq. (4.30) are simply related by the change of basis, since either set of

projectors (s-channel or t-channel) form a complete set. The t-channel coefficient functions

Ψi
t are linearly related to the functions Ψi

s:

Ψi
t =

∑

k

Ck
i Ψk

s , Ψi
s =

∑

k

Ck
i Ψk

t , (4.31)

where the crossing matrix C is given in the Appendix C.

6We hope that our convention in which the tensor Z+ defines the signature odd state is not hopelessly

confusing. Although this convention is somewhat unfortunate, we have decided to stick literally to the

notations of [57] rather than risk even greater confusion.
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Figure 3: The t-channel projection of two Wilson lines. Each one of the two s - channel gluons

exchanges a given color representation with the target. Additionally the two exchanges form an

overall color singlet.

Analogous transformation can be performed for the G
− (−−)
q , G

+ (−−)
q , G

− (−+)
q states.

The s channel Z+ tensor remains the Z+ tensor in the t-channel, while the s-channel Z−

tensor becomes in the t-channel the difference of the projectors [P 10 −P 10]. The s-channel

[P 10 − P 10] becomes Z− in the t - channel.

This t-channel representation of the function G
S (CP )
q is suggestive of the interpretation

of the exchanged states in the t-channel as bound states of Reggeons discussed in the

previous subsection. In fact this turns out to be a very convenient interpretation since as

we will see the eigenstates of H0 correspond to a fixed t-channel projector P i (that is only

one Ψi
t(x, y) is nonvanishing for a particular eigenstate).

The eigenvalue problem in the two particle sector is

H0 GS (CP )
q = ωq GS (CP )

q (4.32)

Our goal now is to reformulate eq. (4.32) as equations for Ψs and Φ. This is achieved by

applying to eq. (4.32) of the operators

P j βδ
αγ

δ

δR̃αβ(x)

δ

δR̃γδ(y)
and Zr βδ

αγ

δ

δR̃αβ(x)

δ

δR̃γδ(y)

This leads to the following equations

P j βδ
αγ

δ

δR̃αβ(x)

δ

δR̃γδ(y)
H0 G+ (++)

q = 2ωq tr[P j] Ψj
s(x, y) = 2ωq Dj Ψj

s(x, y) (4.33)

and

Z±βδ
αγ

δ

δR̃αβ(x)

δ

δR̃γδ(y)
H0 G∓ (−−)

q = ∓ 4ωq (N2 − 4)D8 Φ∓(x, y) (4.34)

Z− γδ
αβ

δ

δR̃αβ(x)

δ

δR̃γδ(y)
H0 G− (−+)

q = 4ωq (N2 − 4)D8 Ψ−
s (x, y) (4.35)

where Dj ≡ dim[Rj ] is the dimension of the corresponding representation. The eigenvalues

ωq and the functions Ψs, Φ are found by solving the system of homogeneous equations

eq. (4.33) and eq. (4.34). The details of the calculation of the left hand sides of eq. (4.33),

eq. (4.34) and eq. (4.35) are given in the Appendix B. The results are summarized and

discussed in the next two subsections.
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4.3.1 Pomeron and family.

Let us consider first the equations for the C-parity even sector. Equations eq. (4.33) can

be written as (see Appendix B)

{

λj +
∑

i

(−1)sj+siC̄i
j

}

×

∫

z

[

2Kx,y,zΨ
i
s(x, y) − Kx,z,yΨ

i
s(x, z) − Kz,y,xΨ

i
s(y, z) + 2δ(x − y)

∫

u
Kz,u,xΨ

i
s(z, u)

]

+
∑

i

{

C̄i
j − δi

j

}

∫

z

[

2Kx,x,zΨ
i
s(x, y) − Kz,z,yΨ

i
s(x, z) − Kz,z,xΨ

i
s(y, z)

]

=
ω

2N
Ψj

s(x, y)

(4.36)

where si = 0 if i is a symmetric representation, si = 1 if i is antisymmetric, and the matrix

C̄ is given in eq. (C.25). No summation over j is implied. Using the relations eq. (4.31)

one can show that this system is diagonal in the t-channel

−

∫

z

[

2Kx,y,zΨ
i
t(x, y) − Kx,z,yΨ

i
t(x, z) − Kz,y,xΨ

i
t(y, z) + 2δ(x − y)

∫

u
Kz,u,xΨ

i
t(z, u)

]

−

∫

z

[

2Kx,x,zΨ
i
t(x, y) − Kz,z,yΨ

i
t(x, z) − Kz,z,xΨ

i
t(y, z)

]

=
ω

2N(1 − λi)
Ψi

t(x, y) (4.37)

with λi given by eq. (4.18) and λ10+10 = 0. eq. (4.37) is the non-forward BFKL equation

in the coordinate representation. In the Fourier space

ψ(k1, k2) ≡

∫

x,y
Ψi

t(x, y) ei k1 x+ i k2 y

the equations eq. (4.37) read

[

ω

2 (1 − λi)
− β(k1) − β(k2)

]

ψ(k1, k2) =

∫

q1,q2

K2→2(k1, k2; q1, q2) ψ(q1, q2) (4.38)

The kernel K2→2(k1, k2; q1, q2) is real part of the of the standard momentum space BFKL

kernel

K2→2(k1, k2; q1, q2) = (4.39)

= −
ᾱs

2π

[

(q1 − k1)i
(q1 − k1)2

−
q1 i

q2
1

] [

(q2 − k2)i
(q2 − k2)2

−
q2 i

q2
2

]

δ2(k1 + k2 − q1 − q2)

The BFKL trajectory ωBFKL is given by eq. (3.14). Thus we find five independent singlet

exchanges in the t-channel with the eigenvalues

ωi = 2 (1 − λi)ωBFKL (4.40)

They have a natural interpretation as ”bound states” of the Reggeons discussed earlier.

The compound state of two reggeized gluons is the standard BFKL Pomeron with

ω[8A, 8A] = ωBFKL (4.41)
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x

y

8A 8 8S

Pomeron

BFKLω = ω 

Pomeron

S

ω = ω BFKL

Odderon

8A 278S 278 A

ω = 2 ( 1 + 1/Ν ) ω BFKL

Figure 4: t-channel bound states of reggeized gluons.

In addition we have the following nontrivial bound states (Fig. 4)

ω[8S , 8S ] = ωBFKL , ω[10 + 10, 10 + 10] = 2ωBFKL ,

ω[R7,R7] = 2

(

1 −
1

N

)

ωBFKL , ω[27, 27] = 2

(

1 +
1

N

)

ωBFKL . (4.42)

The Pomeron that would correspond to exchange of a pair of singlet representations

has zero eigenvalue just like its ”constituent” s - Reggeon. Thus the contribution due to

this exchange to the cross section is flat with energy.

Note that the eigenvalues in the 10 + 10, 27, and R7 channels are proportional to the

second Casimir of the respective representations and are therefore greater than that of the

BFKL Pomeron. The reason is that these exchanges require at least four gluon coupling in

the t-channel as opposed to the BFKL Pomeron which in the Born approximation consists

of two t-channel gluons. Thus the coupling of these Pomerons in perturbation theory is

of order α4
s and they have the same nature as the two BFKL Pomeron exchange. We will

discuss this in more detail in the next subsection.

It is interesting to note that the eigenvalue of the bound state of two 27-Reggeons is

higher than twice the BFKL value. Although four t channel gluon states with intercept

greater than two Pomerons have been discussed in the literature [11, 76], the correction we

find is higher. It is of order 1/Nc and not 1/N2
c as may be naively expected. The reason for

this is that in the Nc → ∞ limit the 27 and R7 Reggeons are degenerate. In this situation

the finite Nc correction naturally starts with order 1/Nc as the 1/Nc perturbation theory

is degenerate. This is also the reason why the O(1/Nc) corrections to the R7 and 27 states

have opposite sign. A similar phenomenon is observed in the dependence of the k-string

tensions on Nc in Yang Mills theories where indeed the 1/Nc correction is also related with

the value of the second Casimir - the so called Casimir scaling [77].

Finally we note that the functions Ψi
t(x, y) are not required to vanish at x = y. Thus,

unlike in the dipole model the solutions to the BFKL equation for Ψi
t(x, y) are not limited

to the Moebius invariant ones but include a larger set of solutions which are nonvanishing

for the configuration where the transverse coordinates of two s - channel gluons coincide.

This will be important for the discussion of section 5.

4.3.2 Odderon and friends.

In the C-parity odd sector eq. (4.34) and eq. (4.35) lead to three decoupled equations for

– 28 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

the functions Φ+, Φ− and Ψ−
s . For the Φ− component we have

−

∫

u

[

Ku,x,y Φ−(u, x) + Ku,y,x Φ−(y, u)
]

+

∫

v

[

Kv,v,y Φ−(x, v) + Kv,v,x Φ−(v, y)
]

− 2

∫

z
[Kx,y,z − Kx,x,z] Φ

−(x, y) =
ω

N
Φ−(y, x) (4.43)

This is the BFKL equation for the Odderon. The solutions are antisymmetric BFKL

eigenfunctions. This solution is known as the BLV Odderon and was originally found in

[59]. This Odderon is a ”bound state” of the reggeized gluon and the d-Reggeon.

For the signature even Φ+ component we obtain the very same equation but with the

eigenvalues twice as big

−

∫

u

[

Ku,x,y Φ+(u, x) + Ku,y,x Φ+(y, u)
]

+

∫

v

[

Kv,v,y Φ+(x, v) + Kv,v,x Φ+(v, y)
]

− 2

∫

z
[Kx,y,z − Kx,x,z] Φ

+(x, y) =
ω

2N
Φ+(y, x) (4.44)

In the t-channel the color tensor structure of this eigenstate is that of [P 10 − P 10]. Its

interpretation therefore is that of the bound state of the (degenerate) 10 and 10 Reggeons

which is antisymmetric both in color and coordinate spaces. The eigenvalues for eigenstates

on this Odderon trajectory have twice the value of the corresponding BLV eigenstates.

Since for the BLV Odderon ω ≤ 0, the exchange due to this second Odderon is always

suppressed. As we will show in the next subsection its coupling in the perturbative regime

is also suppressed by α3
s relative to the BLV Odderon, since this solution corresponds to

the t-channel state containing at least six gluons.

Surprisingly we find that the P even Odderon solution, Ψ−
s , obeys the ordinary BFKL

equation:

−

∫

z

[

2Kx,y,z Ψ−
s (x, y) − Kx,z,y Ψ−

s (x, z) − Kz,y,xΨ
−
s (y, z)

+ 2 δ(x − y)

∫

u
Kz,u,x Ψ−

s (z, u)

]

(4.45)

−

∫

z

[

2Kx,x,z Ψ−
s (x, y) − Kz,z,y Ψ−

s (x, z) − Kz,z,x Ψ−
s (y, z)

]

=
ω

N
Ψ−

s (x, y)

Since wave function is symmetric under the interchange of the coordinates the eigenvalues

corresponding to this solution lie on the very same trajectory as the BFKL Pomeron

ωBFKL. This Odderon grows with energy and dominates over all previously known C odd

exchanges. We will comment on its couplings in the next subsection.

4.4 Scattering of a gluonic dipole

In this subsection we comment on the relation of the eigenstates discussed above to the

cross section of the scattering of an s - channel gluonic dipole. The basic relation is very

similar to that of the dipole model. Consider the evolution of the scattering amplitude of
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a single gluonic dipole. The projectile wavefunction at initial rapidity eq. (2.18) consists of

two gluons at transverse coordinates x, y in a color singlet state. The projectile averaged

s-matrix Σ eq. (2.20) has the form

Σ[R] =
1

N2 − 1
tr[R(x)R†(y)] = P 1 αβ

γδ Rαγ(x)Rβδ(y) =
1

N2 − 1

∑

i

P i αγ
βδ Rαγ(x)Rβδ(y)

(4.46)

The latter form allows us to express this wave function in terms of the two particle eigen-

states of H0. We use the completeness relation eq. (3.16) to write:

P i αγ
βδ Rαγ(x)Rβδ(y) =

∞
∑

n=−∞

∫ ∞

−∞
dν

∫

d2ρ

(

ν2 + n2

4

)

π4 |x − y|4
G+ i

n,ν,ρ En,ν ∗(x − ρ, y − ρ)

+ δi1
[

trR(x) + trR(y) − (N2 − 1)
]

(4.47)

eq. (4.47) has the structure of eq. (2.24). Let us define γq as

γq(x, y) =
1

N2 − 1

(

ν2 + n2

4

)

π4 |x − y|4
En,ν ∗(x − ρ, y − ρ)

The evolved amplitude of the scattering of the dipole off a target specified by a wave

function W T at rapidity Y reads

S(Y ) =
∑

i

∑

q

γq eωi (Y −Y0)

∫

DS W T
Y0

[S] G+ i
λ [S]

+

∫

DS W T
Y0

[S]
1

N2 − 1

[

trS(x) + trS(y) − (N2 − 1)
]

(4.48)

where the sum over q denotes summation over n and integrations over ν and ρ. Just

like in the dipole model this expression violates unitarity. Even if we arrange ΣY0[S] so

that all coefficients satisfy eq. (2.20) at the initial rapidity Y0, this property is violated at

higher rapidities. Some ”probabilities” in eq. (4.48) grow beyond unity while some become

negative. The overall norm of the state remains normalized, ΣY [1] = 1.

The situation is in fact even more complicated, since eq. (4.47) notwithstanding, glu-

onic dipole couples also to higher multi Reggeon states. Thus for example the gluonic

dipole will also couple to ”Pomeron” containing three reggeized gluons. We discuss this in

detail in the next section. These problems are endemic to any approximation that treats

the interaction term in the RFT Hamiltonian perturbatively and can only be solved beyond

this perturbative expansion.

Setting these problems aside for the moment we would like to ask a very specific

question about the minimal t-channel gluon content of the Pomerons we have found in

this section. To this end, we expand the expression for S in perturbative series. In our

approach, the coupling constant enters explicitly only in the phase of the matrix S:

Sαγ(x) = 1 + i T a
αγ αa(x) −

1

2
(T a T b)αγ αa(x)αb(x) + ... (4.49)

– 30 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

In perturbation theory (for small targets) the magnitude of the field α is proportional to

αs. Thus to find the leading perturbative content of each Pomeron we have to expand the

appropriate eigenstate G+ (++)[S] to the lowest order in α. To order α2
s only the BFKL

Pomeron eigenstate contributes

P 8A αγ
βδ Sαγ(x)Sβδ(y) = N αa(x)αa(y) . (4.50)

To this order the scattering amplitude (we omit the terms which do not evolve with energy)

is:

Sα2
s
(Y ) = N2 eωBF KL (Y −Y0)

∑

q

γq(x, y)

∫

u,v
〈αa(u)αa(v)〉T En,ν(u − ρ, v − ρ) (4.51)

where the target average is defined as

〈O〉T ≡

∫

DS W T
Y0

[S]O[S]

In order α4
s we get contributions also from all symmetric representations

P i αγ
βδ Sαγ(x)Sβδ(y) =

N2 λ2
i

4
P i ab

cd αa(x)αb(x)αc(y)αd(y), i = 8S , 27, R7 (4.52)

Those come from expanding each factor of S to second order in α. Note that there is also

O(α4
s) correction to the nonlinear relation between α(x) and ρ(x) according to eq. (2.2).

To this order this contributes only to the reggeized gluon exchange and therefore only to

the BFKL Pomeron. The O(α4
s) contribution to the S-matrix of the gluonic dipole is

Sα4
s
(Y ) = N2

∑

i

λ2
i

4
e2 (1−λi) ωBF KL (Y −Y0)

∑

q

γq(x, y)

× P i ab
cd

∫

u,v
〈αa(u)αb(u)αc(v)αd(v)〉T En,ν(u − ρ, v − ρ) (4.53)

The dominant exponent at the four t - channel gluon level comes from i = 27 unless the

target has a very particular structure which suppresses its contribution through the S-

integral in eq. (4.53). Note that for a projectile containing four gluons in the s-channel at

order O(α4
S) there is also a contribution due to the double Pomeron exchange. Compared

to the double Pomeron exchange, the residue of the [27, 27] exchange is suppressed by

1/N2.

It is also interesting that the [10 + 10, 10 + 10] Pomeron does not couple to the gluon

dipole at O(α4
s). This state contains at least six t channel gluons and has a further sup-

pression in its coupling strength to dilute targets.

Let us now consider a projectile which couples to a negative charge conjugation ex-

change such as the Odderon. Note that a charge conjugation odd exchange does not

contribute directly to the forward scattering of any projectile which is an eigenstate of

C-parity. The physical states in pure Yang-Mills theory are indeed eigenstates of the C-

parity since they are color singlets due to the confinement of color. In perturbation theory
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however the color is not confined and one is in principle free to consider projectiles which

are not color singlets. Such projectile wave functions also do not have to be C-parity

eigenstates. In particular one can consider a gluonic octet dipole which is a superposition

of the 8A and 8S representations7. The Odderon does contribute to the forward scattering

amplitude of such a state. Another example of such a state is the quark dipole. Although

it is a color singlet, the dipole with a fixed transverse position of a quark and an antiquark

is not an eigenstate of C-parity, and the Odderon was found to contribute to its forward

scattering amplitude in[55, 56]. ¿From our perspective considering such states is merely a

convenient trick to make explicit what is the t-channel gluon content of Odderon states.

Consider therefore the ”state”

Σ[R] = Z+ αβ
γδ Rαγ(x)Rβδ(y) (4.54)

The lowest order perturbative expansion starts with the term of order α3 where two t

channel gluons couple to one leg of the dipole and the third one to the second leg. We find

Z+αβ
γδ Sαγ(x)Sβδ(y) =

N2

4
dabc [αa(x)αb(x)αc(y) − αa(y)αb(y)αc(x)] (4.55)

The S-matrix to this order is

Sα3
s
(Y ) =

N2

4

∑

q

γq(x, y)eωodd (Y −Y0)dabc (4.56)

×

∫

u,v
〈αa(u)αb(u)αc(v) − αa(v)αb(v)αc(u)〉T Φn,ν(u − ρ, v − ρ)

Where Φ are antisymmetric solutions of the BFKL equation, see [59]. Thus the Z+ ex-

change indeed behaves as the usual (BLV) Odderon with intercept 1 + ωodd(q = 0).

For the Z− state we can simply refer to the derivation in the Pomeron sector, since

as mentioned above it has the color structure of [P 10 − P 10] in the t-channel. Therefore

just like the [10 + 10, 10 + 10] Pomeron it contains at least six t-channel gluons. We have

checked explicitly that the coupling of this state at the six gluon level does not vanish.

Finally, the P even Odderon solution which arose in our calculation couples to the

”state”

Σ[R] = [P 10 − P 10]αβ
γδ Rαγ(x)Rβδ(y) = Z−αγ

βδ Rαγ(x)Rβδ(y) (4.57)

Expanding to the lowest order in α we find

Z−αγ
βδ Sαγ(x)Sβδ(y) =

N2

4
dabc [αa(x)αb(x)αc(y) + αa(y)αb(y)αc(x)] (4.58)

7Note that within perturbation theory it is perfectly legitimate to consider projectiles which are not

color singlets, even though the cross section of scattering of two nonsinglet objects is infrared divergent.

The divergence appears as the result of the integration over the impact parameter, while the scattering

probability at fixed imp! act parameter, which is the focus of our discussion, is finite for colored as well as

colorless objects.
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The S-matrix to this gluon order is

Sα3
s
(Y ) =

N2

4

∑

q

γq(x, y) eωBF KL (Y −Y0)

× dabc

∫

u,v
〈αa(u)αb(u)αc(v) + αa(v)αb(v)αc(u)〉T En,ν(u − ρ, v − ρ)(4.59)

Thus the minimal content of this Odderon solution is also three gluons and it’s coupling

is not suppressed by powers of 1/N2 relative to the BLV Odderon. It may seem odd that

this solution as opposed to the BLV Odderon has not been discussed in the framework of

the scattering matrix of a fundamental dipole. The reason is that the fundamental dipole

does not couple to this solution at any order. The fundamental dipole state is

DF (x, y) =
1

N
tr[R†

F (x)RF (y)] (4.60)

The C-parity transforms it into

C†DF (x, y)C =
1

N
tr[R†

F (y)RF (x)] (4.61)

Thus in order to couple to this state a C-odd exchange must also be P -odd. This excludes

the G−{−+} Odderon. This is also the reason why this Odderon does not appear among the

dipole model eigenstates discussed in section 3 even though it is formally not suppressed

by 1/N . It would be interesting to perform a similar analysis for more general physical

states in order to understand whether there are any physical states that can couple to this

Odderon.

4.5 The perturbation.

The first unitarity corrections in perturbative RFT originate from applying the pertur-

bation HI to a generic t - channel exchange in the two particle sector described by the

wavefunction Ωλ
gg:

|gg〉 =

∫

u,v
R̃αβ

u Rγδ
v Ωλ

gg(u, v) |0〉 (4.62)

For color singlet t-channel exchanges the state |gg〉 can be decomposed into components

along the Pomeron and Odderon directions. More generally an arbitrary t channel exchange

|gg〉 does not have to be a color singlet and therefore has projections onto non singlet t-

channel exchanges which we have not studied in this paper. Quite generally however, the

perturbation HI when acting on the state in a two gluon sector |gg〉 creates a state in the

four gluon sector |gggg〉:

|gggg〉 ≡ HI |gg〉 = K̂x,y,z

[

T a (R̃x − R̃z)
]

αβ
R̃am

z R̃bm
z

[

(R̃y − R̃z)T b
]

γδ
Ωgg(x, y)|0〉

+ K̂x,y,z

[

T a (R̃x − R̃z)
]

γδ
R̃am

z R̃bm
z

[

(R̃y − R̃z)T b
]

αδ
Ωgg(y, x)|0〉
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−

∫

x,y,z
Kx,x,z R̃αβ

y R̃ab
z

[

T a (R̃x − R̃z)T b
]

γδ
Ωgg(y, x)|0〉

−

∫

x,y,z
Ky,y,z R̃γδ

x R̃ab
z

[

T a (R̃y − R̃z)T b
]

αβ
Ωgg(y, x)|0〉 (4.63)

eq. (4.63) is the most general form of the transition vertex from two Reggeons into four.

To fully analyze the vertex in terms of the four Reggeon states we would need first to find

spectrum of H0 in the four particle sector. This analysis is much more complicated and

must involve solution of the BKP equation in the four gluon sector. It is beyond the scope

of the present paper. We expect however that the proper analysis of the transition vertex

should contain, among other things the following elements. The ”matrix element” of HI

between the eigenstate |gg〉 projected onto a single Pomeron (bound state of two reggeized

gluons discussed above) and an eigenstate |gggg〉 projected onto two Pomerons, should

reduce to the triple Pomeron vertex of Refs. [11, 12]. A generic singlet eigenstate |gggg〉 is

expected to have projections onto two Odderons as well as two Pomerons. Thus the vertex

P → OO of Ref. [20] is also expected to appear in this calculation. If the initial state

|gg〉 is projected onto Odderon, we expect to find the vertex O → OP [55]. This study is

postponed until later date.

5. Partonic approximation versus BFKL/BKP

Only a small number of the multiple ”Reggeons”, ”Pomerons” and ”Odderons” that we

have found in the previous section appear in the standard BFKL/BKP approach. It is

therefore important to understand the relation of our approximation to BFKL and what

additional physics, if any it contains.

To make this connection, first let us formulate the BFKL approximation in terms of

the approximation to the KLWMIJ Hamiltonian. In the BFKL approximation every gluon

which is emitted in the process of the evolution is assumed to scatter on the target only

once, and the scattering probability is assumed to be a small parameter. This corresponds

to approximating the unitary matrix R and its functional derivative by

Rab(x) → δab + T ab
c

∫

dx− δ

δρc(x, x−)
(5.1)

δ

δRab(x)
→ T ab

c

∫

dx−ρc(x, x−)

Denoting
∫

dx−ρa(x, x−) by ρa
x, and dropping terms of order [ δ

δρc(x) ]
3 in eq. (2.14), the

KLWMIJ Hamiltonian reduces to

HBFKL = K̂x,y,z (T aT b)cd ρa
x

[

δ

δρc
x

−
δ

δρc
z

] [

δ

δρd
y

−
δ

δρd
z

]

ρb
y (5.2)

Note that the approximation eq. (5.1) by itself as an approximation to HKLWMIJ

does not have an expansion parameter. It becomes an expansion in αs only once we agree

to consider the scattering of the projectile whose evolution we describe on dilute targets
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with colour fields of order αT = O(αs). As discussed above, after averaging over the

projectile wave function, factors of δ/δρ turn into factors of the target field α, which has

to be averaged over the target wave function. For dilute targets therefore, every additional

factor of δ/δρ brings an extra power of αs.

We can now search for the eigenstates and the eigenvalues of this functional BFKL

Hamiltonian 8. The calculation follows the same line as in the previous section except it is

much simpler. The eigenstates have the general form

GBFKL
n, λ, q = P ab...c

λ

∫

x1...,xn

Ψn,λ, q(x1, x2, ..., xn)
δ

ρa
x1

δ

ρb
x2

...
δ

ρc
xn

|0〉 (5.3)

where P ab...c
λ projects the product of n adjoint representations onto the representation λ and

the functions Ψn, λ, q(x1, x2, ..., xn) satisfying the n-gluon BKP equations with eigenvalues

ωn, λ, q
9. The resulting eigenstates are those and only those which are present in the

standard BFKL/BKP approximation. In particular the only state in the one gluon sector

(n = 1) is the reggeized gluon. In the two gluon sector the only C-even singlet exchange is

the BFKL Pomeron, and the only C-odd one is the BLV Odderon. The nonsinglet states

again are only those that can be constructed from two reggeized gluons. There is no trace

of the ”Reggeon” states corresponding to other color representations we have discussed in

the previous section, as well as of the additional Pomeron and Odderon states constructed

from these Reggeons.

The next question one should address is, given the eigenfunctions of the functional

BFKL Hamiltonian (BKP eigenstates) how do we calculate the scattering amplitude of

a physical state Φ. To do this, in principle one has to expand this state in the basis of

eigenstates and evolve each eigenstate with its own exponential factor

ΦY =
∑

n, λ, q

eωn, λ, qY γn, λ, q GBFKL
n, λ, q (5.4)

with

γn, λ, q = 〈GBFKL
n, λ, q |ΦY =0〉 (5.5)

This however presupposes that the eigenstates of the BFKL Hamiltonian form a complete

basis of normalizable states. This assumption is problematic to say the least, as the states

GBFKL
n,λ,q are not normalizable. The reason for this is easy to understand. The expansion

of R to first order in Taylor series in eq. (5.1) is equivalent to Taylor expansion of the

eigenfunctions to the lowest order in δ/δρ10. Thus the eigenfunctions in eq. (5.3) being

8We emphasize the word “functional” to distinguish this Hamiltonian from the commonly used BFKL

Hamiltonian which acts on space of functions of two transverse coordinates. The Hamiltonian eq. (5.2)

generates the standard BFKL equation for the Pomeron in the two gluon sector, but also the whole hierarchy

of the BKP equations for the higher ”Fock space” states - see below.
9In the rest of this section all multi-gluon BKP states will be referred to as the eigenstates of the

functional BFKL Hamiltonian.
10We do not mean to imply that this is expansion of exact eigenfunctions which correspond to exact

eigenvalues of HKLWMIJ . In particular the spectrum of HBF KL is certainly not the same as that of

HKLWMIJ , as the latter operator is positive definite, while some of the BFKL eigenvalues are negative.

Thus the effect of approximation eq. (5.1) is not only to expand the eigenfunctions, but also to distort the

spectrum of HKLWMIJ .
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homogeneous polynomials are clearly not normalizable.

One possible strategy to avoid this problem would be to expand the wavefunction of

a physical state at initial rapidity in Taylor series in δ/δρ and algebraically match the

coefficients to the BKP solutions. For example for a single s - channel gluon state we have
11

Rab(x)|0〉 =

(

δab + T ab
e

δ

δρe(x)
+

1

2
(TeTf )ab δ

δρe(x)

δ

δρf (x)
+ · · ·

)

(5.6)

Then the coefficient of each power of δ
δρ is expanded in the BKP eigenfunctions Ψn,λ,q.

For example the coefficient of the linear term is given in term of the eigenfunctions of the

reggeized gluon, which are simply plane waves,

δ

δρa(x)
=

∫

d2q ei q x G1, a, q . (5.7)

The coefficient of the quadratic term can be expanded in the BFKL eigenstates of eq. (3.13)

analogously to eq. (4.47). Clearly only Moebius noninvariant solutions of the BFKL

equation contribute to this expansion. The third order terms in δ/δρ can be ”projected”

onto three gluon BKP states and so on.

Similarly to the section 4.2, we can use ηλ
ab in order to project the state eq. (5.6) onto

a definite color representation in the t-channel ηλ
abR

ab. Only λ = 8A contributes to the

expansion of the linear term while all the other representations contribute to the quadratic

or higher terms only. The quadratic term has the structure of a ”bound state” of two

reggeized gluons at the same point in transverse plane projected onto a given representation

λ. Note that the BFKL equation for the channels λ = 1 and λ = 27 (R7) leads to a cut and

not to a simple pole in the Mellin representation. This is different from the contribution

of the ‘exotic” colored Reggeons found in section 4.2 which lead to a pole structure. We

will discuss the nature of the difference between these contributions later.

Analogously to eq. (5.6), for the two s - channel gluon state we would write

Rab(x)Rcd(y)|0〉 =

(

δabδcd + T ab
e

δ

δρe(x)
δcd + T cd

e

δ

δρe(y)
δab+ (5.8)

+
1

2
(TeTf )ab δ

δρe(x)

δ

δρf (x)
δcd +

1

2
(TeTf )cd

δ

δρe(y)

δ

δρf (y)
δab+ (5.9)

+T ab
e

δ

δρe(x)
T cd

f

δ

δρf (y)
+ . . .

)

|0〉 (5.10)

Identifying each term in the expansion with a linear combination of BKP states one obtains

an expansion of the form

Rab(x)Rcd(y)|0〉 =
∑

n,λ,q

γ̃n, λ, q GBFKL
n, λ, q (5.11)

whose evolution in rapidity is then given by eq. (5.4). Note that even though some of

the individual eigenvalues of the BKP hierarchy are positive, the scattering amplitude

11As discussed in [41] when the operator R acts on a symmetric function of ρa(x, x−), the path ordering

in its definition is unimportant. We use this fact in writing eq. (5.8).
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calculated in this way is expected to be unitary due to eikonalization of the multigluon

exchanges inherent in the exponential form of R.

Strictly speaking keeping higher order terms in the expansions eq. (5.6,5.8) is beyond

the accuracy of the approximation eq. (5.1). Within this approximation only the lowest

term in the expansion of the projectile wave function can be kept. More precisely one

should keep the term which becomes leading after averaging over the target wave function.

Thus for example, if the target is assumed to have only color singlet correlators (as any

physical hadron should), the leading term is quadratic in δ/δρ for any projectile wave

function. This term describes single BFKL Pomeron exchange. Contributions of all higher

BKP states after averaging over the wave function of a dilute target are suppressed by

powers of αs.

Even if one decides to keep the higher order terms it is important to realize that the

procedure sketched in eqs.(5.8,5.11) is by no means unique. The reason is that the BKP

states (5.3) are only determined to lowest order in Taylor expansion. Thus for example

adding higher order terms to the eigenfunctions is no less accurate than keeping higher

order terms in the expansion eq. (5.8). On the positive side, such a modification can make

eigenfunctions normalizable. In particular consider the following natural modification: in

all the eigenstates of eq. (5.3) make the substitution

δ

δρa
→ −

1

N
Tr(T a R) (5.12)

This modification does not change the leading order terms, but now since the matrix R

is unitary, the modified states are normalizable. With these modified states one could go

back to the original prescription and calculate the evolution according to eqs.(5.4,5.5). This

unfortunately is not quite kosher either, since although the modified states are normalizable,

they are not necessarily orthogonal to each other even if they correspond to different

eigenvalues. In particular a state GBFKL
n,λ,q has a nonvanishing overlap with a state GBFKL

n+1,λ,q if

the wave function Ψn+1(x1, ..., xn+1) does not vanish when two of the coordinates coincide,

xi = xj and the overall color representations of the two states are the same. This is

again clearly the result of the ambiguity of the higher order terms in δ/δρ which is not

parametrically suppressed within the KLWMIJ framework proper.

This discussion is of course not original. We presented it to demonstrate that just like

in the standard Feynman diagram approach, in the framework of the BFKL truncation

of the KLWMIJ Hamiltonian only the one Pomeron exchange constitutes the proper weak

coupling expansion, but also to stress that the powers of the coupling constant enter only

through the procedure of averaging over the target. As long as we do not commit to scatter

the projectile on a dilute target, that is within the KLWMIJ Hamiltonian proper there is

no parameter which makes the BFKL truncation leading in any sense. The one Pomeron

exchange approximation of course violates unitarity. The unitarity can be restored by

summing contributions of higher BKP states, but this summation is ambiguous. In order

to properly unitarize BFKL approximation truncation of the scattering matrices R in the

Hamiltonian itself is not allowed.

– 37 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

The truncation eq. (5.1) of the KLWMIJ Hamiltonian has two consequences, which are

physically quite distinct. The first one is that the number of gluons in the wave function

does not change throughout the evolution. This is obvious since each factor of δ/δρ is

associated with one gluon, and the BFKL Hamiltonian is homogeneous in δ/δρ. As a

result the eigenstates eq. (5.3) have a fixed number of gluons. Second, each gluon in the

wave function is only allowed to scatter on the target once. Thus the single gluon scattering

matrix 1−R in this approximation is always in the adjoint representation in the t - channel,

since only single gluon exchange between any projectile gluon and the target is allowed.

The complete treatment of KLWMIJ Hamiltonian will therefore bring two types of

corrections to the BFKL approximation. The first one is due to the possibility of the

gluons of the projectile to multiply scatter on the target. This in particular allows processes

whereby a single gluon of the projectile exchanges color representations other than just the

adjoint with the target. The second type of correction involves what one can call the

generalized triple Pomeron vertex. It takes properly into account the fact that the number

of gluons in the projectile wave function does not stay fixed through the evolution.

¿From this perspective the partonic approximation discussed in the previous section

goes beyond the BFKL approximation in that it allows multiple scattering of the projectile

gluons. It can be checked directly that if we restrict the matrix R̃ = 1 − R within the

Hamiltonian eqs.(4.3,4.4) to have only adjoint component:

R̃ab → T ab
c

δ

δρ̄c
(5.13)

the partonic approximation Hamiltonian eq. (4.2) reduces directly to the BFKL Hamilto-

nian eq. (5.2). Thus clearly the partonic approximation contains all the BKP eigenstates

with the same eigenvalues as the standard calculation. Their interpretation is just like in

the BFKL approximation - ”bound states” of reggeized gluons. The only difference is that

now the amplitude δ
δρ̄c contains in principle not only single gluon exchange but also multi-

ple exchanges with net color in the adjoint representation. The other Reggeon states in the

parton approximation all correspond to t-channel exchanges in higher color representation

and their ”bound states” which all can occur only if each projectile gluon is allowed to

multiply scatter on the target. As explained above these exchanges are not accounted for

in the BFKL approximation, but instead are additional contributions which still preserve

the total number of s - channel gluons in the projectile.

To put things into perspective, the accuracy of including the extra Reggeon contribu-

tions into the calculation of the scattering amplitude is no better or worse than that of

the higher BKP states. To begin with we have treated the variable R in the previous sec-

tion as a linear variable rather than a unitary one, and so the states in eqs.(4.27,4.28) are

strictly speaking not normalizable. However in complete analogy with the treatment of the

higher BKP states in eq. (5.12) we can treat R as unitary when calculating the norm of the

eigenstates. This procedure then makes the multi-Reggeon states normalizable, but non-

orthogonal. The non-orthogonality is of very same nature as for the modified BFKL/BKP

states discussed above. If a wavefunction Ψ(x1, ..., xn+m) does not vanish when any m

transverse coordinates in a state Gm+n coincide, then this state is not orthogonal to a
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state Gn as long as the two states have the same color quantum numbers. In this way the

states which formally have n powers of R contribute to scattering amplitude of any state

with m ≤ n gluons. For example the Moebius noninvariant Pomeron state contributes to

the scattering amplitude of a single s-channel gluon via a singlet t-channel exchange. The

t - channel exchange amplitude in the representation 27 will have a pole contribution from

the 27 Reggeon state as well as a cut contribution from the two reggeized gluon state with

total color representation 27 as well as from higher multi Reggeon states.

The question whether the extra Reggeons we discussed here and their ”composites” give

important contributions to scattering amplitudes can only be decided with the knowledge

of the structure of the target. As we have noted above, the partonic approximation is

identical to the BFKL approximation if the target is dilute so that only single scattering

is allowed. However one can imagine a situation in which the target is not so dilute that

multiple scatterings are important but still not dense so that the scattering amplitude of

a single gluon is significantly smaller than unity. The smallness in this case will not be

parametric in αs, but for example simply numerical. In that case the other Reggeons are

a priory as important as the reggeized gluon and their ”composites” are no less important

than the BKP states.

To summarize this discussion, the Reggeon states discussed in the previous section

are complementary to the higher BKP states. Both take into account multiple scattering

corrections, but the corrections are of different kinds. The BKP states encode corrections

due to scattering of multiple gluons of the projectile where each gluons scatters on the

target only once. The extra Reggeons and their composites on the other hand encode

unitarization corrections due to processes where each projectile gluon scatters on the target

many times. In order to treat unitarization consistently in addition to those two types of

corrections one also has to take into account the non-conservation of the s - channel gluon

number due to the interaction term in the KLWMIJ Hamiltonian. We note an interesting

point that some of the additional Reggeon composites we have discussed above lead to

faster growth of the scattering amplitude with energy than the corresponding BKP states

that contribute nominally in the same order in αs. For example as discussed above the

[27, 27] exchange grows significantly faster than the known four gluon BKP states (its

overall amplitude is however suppressed by the factor 1/N2). This may be an indication

that the extra Reggeons and their composites are no less important for unitarization than

the standard BKP states.

6. Discussion

Our goal in this paper was to relate the language of the KLWMIJ/JIMWLK evolution

to that of the Reggeon field theory. We have shown that the KLWMIJ (or equivalently

JIMWLK) Hamiltonian should be understood directly as the second quantized Hamiltonian

of the Reggeon field theory. We have described precise correspondence between many

elements of the standard QCD Reggeon theory approach and the calculation of QCD

scattering amplitudes using JIMWLK evolution. We note that our discussion is not in

terms of cut amplitudes - the objects of standard use in much of Reggeon field theory
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literature. Filling this missing link is an interesting question which should be addressed in

future work.

The quantum field degree of freedom in the Reggeon field theory discussed here is the

SU(N) matrix valued field which directly corresponds to the eikonal scattering matrix of

a single gluon. The fact that the basic degree of freedom is a local field in the transverse

space makes the theory similar to the original pre-QCD Reggeon field theory of Gribov

analyzed in [2] (and also recently in [83]). In this respect it is simpler than the Pomeron

Hamiltonian considered in section 3 (see also [26]) based on the dipole model, whose basic

degree of freedom is the bilocal dipole field. It is however much more complicated than

the Gribov theory in two aspects. First, the basic field is a matrix, and thus the number

of degrees of freedom is significantly greater. And second, the interaction is nonlocal but

rather decreases in the transverse plane only as 1/x2 which leads to the violation of the

Froisart bound [78]. Both these features are related to the specific nature of the QCD

interaction. The proliferation of degrees of freedom is simply due to the fact that the basic

partons of any QCD state are gluons, and the nonlocality of the interaction is the direct

consequence of the perturbative masslessness of the gluon. One would hope that proper

account of confinement can lead to an effective theory, valid at large transverse distances

|x| > 1/ΛQCD which operates directly only with scattering amplitudes of gauge invariant

states and is local on these transverse distance scales. Such a theory should follow from

the fundamental QCD RFT by operator product expansion. It is however unclear to us

whether the number of degrees of freedom in such a theory should remain finite. At any

rate this question is far beyond the scope of the present research.

In this work we have considered perturbative approach in the framework of the QCD

RFT and have found several eigenstates of the free Hamiltonian. In particular we have

found all eigenstates in the one particle channel and color singlet states in the two particle

states.

In the one particle sector we find the reggeized gluon as well as a set of additional

Reggeons corresponding to the exchanges in the color representations 8S , 10, 10, 27 and

R7. In the color singlet two particle sector we find states which are naturally interpreted

as bound states of these Reggeons. In particular we find the standard BFKL Pomeron

which is the ”bound state” of two reggeized gluons, and also Pomerons that correspond

to symmetric bound states of two 8S , two 27, two 10 + 10 and two R7 Reggeons. All

these correspond to charge conjugation even exchanges in the t-channel and have positive

signature.

An interesting observation here is that the [27, 27] Pomeron exchange grows faster with

energy than two BFKL Pomerons. Also the large Nc correction to its intercept is O(1/Nc)

and not O(1/N2
c ) as could be naively expected. The reason for this large correction is that

in the Nc → ∞ limit the [27, 27] and [R7,R7] Pomerons are degenerate and so the 1/Nc

expansion is actually a degenerate perturbation theory.

We also analyzed the C parity odd sector. Here we find three sets of eigenstates.

One is the signature odd bound state of the reggeized gluon and the 8S Reggeon, which

has all the properties of the BLV Odderon. Another set of eigenstates can be thought of

as an antisymmetric bound state of 10 and 10 Reggeons. These eigenstates are charge
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conjugation odd and parity odd. They are quite distinct from the standard Odderon

however in that they have even signature. The intercept of this trajectory is unity and

so these exchanges lead to cross section that does not rise with energy. Finally the third

set of states in the Odderon sector is somewhat mysterious. The eigenstates of this set

have negative signature but positive parity. Their wave functions are symmetric under

the exchange of the transverse coordinates of constituents (the reggeized gluon and the 8S

Reggeon). The intercept of this trajectory is equal to that of the BFKL Pomeron.

We have analyzed the t - channel gluon content of these eigenstates and have found

that the BFKL Pomeron (unsurprisingly) contains at least two gluons, the [8S , 8S ] [27, 27]

and [R7, R7] states contain at least four gluons, the two signature odd Odderons contains at

least 3 gluons while both [10, 10] bound states have at least 6 gluons. Thus perturbatively

the couplings of [8S , 8S ], [27, 27], [R7,R7] exchanges are suppressed by α2
s and of the 10

exchanges by α4
s relative to the BFKL Pomeron.

¿From the s-channel scattering point of view this means that these higher Pomeron

exchanges are due to multiple scatterings. Thus for example in order to exchange the

[27, 27] Pomeron each projectile gluon has to scatter at least twice from the target as is

clear from the derivation in eq. (4.52). ¿From the point of view of the target this means

that the target field must be dense enough so that at a given point in the transverse plane

there is significant probability to find a multigluon state in the representation 27 of the

color group. Such scattering is suppressed if the target is dilute, that is if the probability

to find an extra gluon at a given point in transverse plane is O(αs). However in the high

density regime this suppression disappears, since the probabilities to find an octet or a 27

are equal when the average color charge density is large.

We have analyzed the relation of the spectrum we have found in partonic approximation

to KLWMIJ with the standard BFKL/BKP approach. We have shown that all the BKP

states do appear as eigenstates on the partonic Hamiltonian. The extra states we found are

outside the BFKL/BKP framework, as multiple scatterings of a single projectile gluon are

a fortifiory excluded from the BKP approximation. These are therefore physically distinct

unitarization corrections. Since they are related to multiple scatterings of a single projectile

gluon, it is natural to expect that they are suppressed by powers of 1/N relative to the

corresponding BKP states. This is indeed what we find. For example the contribution of

[27, 27] Pomeron which has an intercept significantly greater than any of the four gluon

BKP states, has a 1/N2 suppression factor relative to the leading BKP state.

Next we discuss some issues related to the structure of the symmetries of the RFT. As

we have already remarked, the theory has a SUL(N) ⊗ SUR(N) symmetry as well as the

discrete charge conjugation symmetry R → CRC and the signature symmetry R → R†.

Expansion around R = 1 breaks spontaneously SUL(N)⊗SUL(N) down to SUV (N) while

both discrete symmetries remain unbroken. The breaking of the symmetry leads to the

appearance of the Goldstone boson, which is the reggeized gluon. Since the intercept

of the other Reggeons is also unity it suggests that the Hamiltonian may have higher

symmetry. The most general transformation that one can define on the space of adjoint

unitary matrices is GL(N2 − 1, R). This is obvious since R can be written in terms of

N2 − 1 real parameters as Rab = [exp{ξcT c}]ab and the parameters ξc can be transformed
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by an arbitrary real linear transformation. The SUL(N) ⊗ SUR(N) transformation is a

small subgroup of this group. It would be interesting to check whether or not the KLWMIJ

Hamiltonian is invariant under a larger subgroup of GL(N2 − 1, R) which is also broken

by R = 1 configuration. There is also a possibility that the appearance of many massless

particles has a similar origin as in supersymmetric theories [80], where additional symmetry

appears if one artificially extends the Hilbert space of the theory. We note that it has been

previously suggested in Ref. [59] that the degeneracy between f - and d- trajectories may

be related to a variant of supersymmetry [81].

Another issue related to symmetries is the status of the conformal symmetry in the

framework of the second quantized RFT. It is well known that the BFKL equation is

conformally invariant on the Moebius invariant sector, that is on the set of functions

F (x, y) which vanish when x = y[82, 17]. The nonlinear Kovchegov equation [33] is also

conformally invariant. In fact it is easy to see that the full KLWMIJ Hamiltonian is

conformally invariant if we were to substitute the Weiszacker-Williams kernel in eq. (2.9)

by the dipole kernel

Kx,y,z → M(x, y, z) = −
αs

4π2

(x − y)2

(z − x)2(z − y)2
= Kx,y,z −

αs

4π2

[

1

(z − x)2
+

1

(z − y)2

]

(6.1)

Under the inversion transformation (with x ≡ x1 + ix2 etc.)

R(x) → R(1/x),
δ

δR(x)
→ (x∗x)−2 δ

δR(1/x)
(6.2)

The dipole kernel can be written as

M(x, y, z) = (z∗z)−2 M(1/x, 1/y, 1/z) (6.3)

Changing the integration variables from x, y, z to 1/x, 1/y, 1/z we see that the Hamiltonian

eq. (2.11) with the dipole kernel is invariant under this transformation. The full conformal

invariance follows from the dilatational and inversion invariance.

The KLWMIJ Hamiltonian eq. (2.11) is not invariant under inversion, as it can be

easily checked that the property eq. (6.3) is not shared by the Weiszacker-Williams ker-

nel K(x, y, z). However as has been extensively discussed in the literature (see [23] or

[56]) if one limits oneself to consideration of color singlet impact factors and color singlet

exchanges, the kernels K and M are interchangeable. Formally speaking, taking the dif-

ference between the corresponding KLWMIJ Hamiltonians one finds terms proportional to

either

Qa
L =

∫

d2xtr

[

δ

δR†
x

T a Rx

]

or

Qa
R =

∫

d2xtr

[

Rx T a δ

δR†
x

]

.

These are the generators of the SUL(N) and SUR(N) transformations respectively. Thus

when acting on states which are SUL(N) ⊗ SUR(N) invariant the two Hamiltonians are

identical.

– 42 –



J
H
E
P
0
2
(
2
0
0
7
)
0
5
8

We therefore conclude that although the KLWMIJ Hamiltonian is not conformally

invariant, part of its spectrum is. Note however that the perturbative approach described

in the present paper breaks spontaneously the SUL(N)⊗SUR(N) symmetry. This type of

perturbation theory would give different results for the two Hamiltonians. In particular the

dipole variant of the KLWMIJ Hamiltonian has no virtual terms of the type eq. (4.4). Its

one particle spectrum is therefore trivial - any one particle state is its eigenstate with zero

eigenvalue. On the other hand the spectrum of the Pomerons and Odderons discussed above

remains unaffected. This may have to do with the fact that even though the perturbative

expansion is not SUL(N) ⊗ SUR(N) invariant, some eigenstates nevertheless do have the

full symmetry of the Hamiltonian.

We note that we have not made a serious attempt to formalize the approximation

scheme employed in this paper. In particular it has two important elements. First we have

split the RFT Hamiltonian into the free and the interaction parts according to eqs.(4.2)

and (4.5). The idea behind it is to separate H into a homogeneous and an inhomogeneous

part. The homogeneous part preserves the number of s-channel gluons throughout the

evolution, while the inhomogeneous term increases this number.

However such a separation is not unique due to the fact that R is a unitary matrix.

Our choice of the split was guided by two criteria: we required that the free and the

interaction parts are separately ultraviolet and infrared finite. The infrared finiteness is

straightforward, it simply asks not to emit new gluons far away from the existing gluons

with probability greater than the square of the Weiszacker-Williams field. The origin of the

requirement of the ultraviolet finiteness in physical terms is the following. Calculating the

cross sections using the homogeneous part of the Hamiltonian corresponds to the partonic

approximation, which treats the scattering of the projectile gluons as completely indepen-

dent. However physically it is clear that if two gluons in the wave function are separated

by a distance which is smaller than the correlation length of the fields in the target, such

partonic approximation is not valid. In this case the two gluon system scatters like a single

object in the color representation that combines the two gluons and the color correlations

can not be neglected. In particular if this two gluon state emerges from a single gluon

through a step in the evolution, such state should scatter as a single octet, and not as

an independent product of two octets. For separations greater than the correlation scale

the partonic approximation makes perfect sense. However our approach is designed for an

arbitrary target and the split into H0 and HI can not depend on ! the characteristic of the

target. The physical alternative then is to choose such a split which suppresses the emission

of a gluon at a neighboring point without introducing a scale, that is in a dilatationally

invariant way. Technically this is ensured in eqs.(4.3,4.4) by the presence of the factors

R̃(x) − R̃(z). This is the only possibility we found to satisfy the condition of ultraviolet

finiteness, but we have not proven that it is unique.

The second important element of our approach was the diagonalization of H0. To do

this we had to differentiate functions of R. Since R is a unitary matrix, this has to be

done with care. The complete RFT Hamiltonian preserves the unitarity of R. This means

that when acting on a wave function which vanishes for nonunitary R, the Hamiltonian

transforms it into another wave function with the same property. In this situation one can
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substitute the constraint differentiation with respect to unitary R by an unconstrained one

as it does not change the action of H on physical states. However this property is not

satisfied by H0 and HI separately. In our calculation we have disregarded this subtlety.

A more careful approach would be to introduce the Lagrange multiplier that imposes the

unitarity of the matrix R. Although we do not believe that this will affect our results,

it is a very important question worth detailed study. In particular there is in principle a

possibility that some of the states we found may be pushed into the unphysical part of

the Hilbert space once the constraint on the R matrix is imposed. The prime suspect here

could be the parity even Odderon, since it does not couple to simple color singlet states.

As we have discussed in section 4, the perturbative treatment of H violates unitarity.

This leads to appearance of negative probabilities as well as to the unbounded growth of the

cross section. In this context the Pomeron states are tachyonic, since they have negative

eigenvalues at low momentum transfers. In fact the Hamiltonian H0 is not bounded from

below and it is clear that such tachyons exist in sectors with arbitrary number of s -

channel gluons with ever increasing intercepts. The cure for this can only come by including

the interaction HI nonperturbatively. We certainly believe that the JIMWLK/KLWMIJ

Hamiltonian does define a unitary theory. Numerical studies of both the BK equation and

of the full JIMWLK equation lead to this conclusion [71]. It would be very interesting

to devise a nonperturbative approach to RFT, perhaps along the lines of a mean field

approximation with 〈R〉 = 0.

A state with 〈R〉 = 0 corresponds to the black disk limit. The SU(N) ⊗ SU(N)

symmetry is restored in such a state. In physical terms the restoration of the symmetry

means that the color index of an incoming gluons is not correlated with the color index

of the outgoing one. Thus the color is completely randomized during the interaction with

the target. It is usual in the quantum field theory that the restoration of symmetry is

associated with condensation of the excitations of the ordered phase. In our case those

excitations are Pomerons. We can think therefore of the black disk limit as condensation

of Pomerons similar to the old ideas of [2] (see also [83] for the renewed interest in this

problem).

This analogy is not perfect. There is no phase transition in RFT, since there really

are no two distinct phases as a function of some external parameter like temperature or

coupling constant. The only parameter in the RFT Hamiltonian eq. (2.11) is αs, but it

enters as an overall multiplicative constant and thus its value can not affect the phase

structure. It only affects the overall scale of the energy and therefore the speed with which

a given state evolves towards the vacuum. So one and the same phase must be realized

at all values of αs. The Pomeron condensation therefore occurs always. This is consistent

with the fact that as excitations they have tachyonic nature already in the perturbative

expansion. In principle the situation might change when the additional terms responsible

for Pomeron loops are included (see discussion below), although we would still expect the

black disc limit to be the ground state for all values of αs at least as long as nonperturbative

confining effects are not accounted for.

A similar situation is encountered in the Gribov effective Reggeon field theory[2], where

the nonperturbative account of the Pomeron interactions leads to a gray disc limiting
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behavior with the growth of the total cross section which satisfies the Froissart bound.

There are however many differences between the two cases. Apart from the ones already

mentioned above, one very important difference is the fact that the KLWMIJ Hamiltonian

which has been the basis of the present work violates t-channel unitarity as it does not

include Pomeron loops.

There has been a lot of activity recently in an attempt to incorporate the Pomeron

loops into the JIMWLK/KLWMIJ formalism [45, 39, 46, 47, 44, 40, 49, 51, 84, 85]. In

spite of some progress in this direction the complete evolution kernel is still unknown. We

therefore still do not have a completely unitary RFT. One could try naively to restore

the t-channel unitarity by symmetrizing the Hamiltonian with respect to R and δ
δR . This

would be analogous to the Gribov theory which is symmetric under the interchange of the

Pomeron field and its conjugate momentum. This idea would lead us to add terms of the

type RR δ
δR

δ
δR

δ
δR to the Hamiltonian. However these terms correspond to the process of

recombination of three s - channel gluons into two as a result of the boost of the projectile

wave function. The s-channel gluons however do not recombine, but rather are created by

the evolution (see [48] for discussion). The nonlinearities in the JIMWLK evolution for

example correspond to the decrease in the emission probability of an extra gluon, but not

to the appearance of recombination in s - channel. In Refs. [47, 44, 40] we have derived

an extended version of the JIMWLK/KLWMIJ equations (JIMWLK+/KLWMIJ+), which

account partially for the effects of Pomeron loops. Similar results were obtained in the path

integral approach in [49, 51]. This work suggests that the t-channel unitarity corrections

should occur as higher powers of R δ
δR . This should have an effect of generating n → m

(n ≥ m) Reggeon transitions alongside the m → n transitions present in KLWMIJ. It

remains unclear whether the effects accounted for in the JIMWLK+/KLWMIJ+ equations

are indeed sufficient to restore the t-channel unitarity of the RFT. It would be interesting

to understand in general whether the selfduality condition of Ref. [40] ensures the t-channel

unitarity. The t-channel interpretation which emerged naturally in the present paper should

be helpful in addressing these questions.

Finally we note that in this paper we considered RFT in gluonic sector only. Although

in the leading eikonal approximation only gluons are created in the evolution, it is not

difficult to consider initial states which contain quarks. To this end essentially all one has

to do is to rewrite the left and right color rotation generators in eq. (2.11) in terms of

the fundamental rather than adjoint matrices RF . One can then repeat the perturbative

analysis of the present paper without any additional complications. It may be interesting

to consider the quark dipole scattering as it is more directly related to physical process

(such as DIS) than the gluon dipole.
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A. Evolution of D4

In this appendix we consider the evolution of the four gluon t - channel state coupled to

a single dipole (s - channel) projectile. The discussion is in the framework of the leading

large N approximation. The state with n gluons in t-channel is defined by eq. (2.28). We

consider two such states - with two and four gluons. We also project the gluons pairwise

on color singlet states as appropriate for the large N limit. We thus consider

D2(Y )(x1, x2) =
1

N

∫

Dρρa(x1)ρ
a(x2)WY [ρ] (A.1)

and

D4(Y )(x1, x2, x3, x4) =
1

N2

∫

Dρρa(x1)ρ
a(x2)ρ

b(x3)ρ
b(x4)WY [ρ] (A.2)

There is one subtle point in this definition which turns out to be important for the cal-

culation of the initial condition. Namely when any two transverse coordinates are equal

(x1 = x3, etc.) the appropriate charge density operators do not commute with each other.

In this case one has to remember that in the integral in eq. (A.2) the charge density variable

is also endowed with the longitudinal coordinate x−, which keeps track of the ordering of

the operators ρa(x1) → ρa(x1, x
−
1 ). This has been discussed in great detail in [41] where

we have also developed a technique to calculate this type of averages taking the noncom-

mutativity into account. We do not give details here but interested reader can consult

[41].

The function D4 is the one considered in [19]. We choose to concentrate on it rather

than on a function completely symmetric with respect to all four gluons [12] because the

color algebra here is marginally simpler. The evolution with rapidity is given by

d

dY
D2 =

1

N

∫

Dρρa(x1)ρ
a(x2)χ

KLWMIJ [ρ,
δ

δρ
]WY [ρ] (A.3)

d

dY
D4 =

1

N2

∫

Dρρa(x1)ρ
a(x2)ρ

b(x3)ρ
b(x4)χ

KLWMIJ [ρ,
δ

δρ
]WY [ρ]

. For a ”virtual photon” projectile state with wave function P γ(u, v) the initial projectile

weight functional is

W [ρ] =

∫

u,v
P γ(u, v)r(u, v)δ[ρ] (A.4)

with r(, v) defined in eq. (3.1).). For such a projectile the initial conditions for eq. (A.3)

are

D2(Y = 0) = D2
0(x1, x2) =

1

N

∫

u,v
P γ(u, v)

∫

Dρρa(x1)ρ
a(x2)r(u, v)δ[ρ]

=

∫

v
P γ(x1, v)δx1,x2 − P γ(x1, x2) (A.5)
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D4(Y = 0) = D4
0(x1, x2, x3, x4) =

1

N2

∫

u,v
P γ(u, v)

×

∫

Dρρa(x1)ρ
a(x2)ρ

b(x3)ρ
b(x4)r(u, v)δ[ρ]

= −
1

2

[

D2
0(x1, x3) δx1,x2 δx3,x4 + D2

0(x1, x2) δx1,x3 δx2,x4 + D2
0(x1, x2) δx1,x4 δx2,x3

−D2
0(x1, x2) δx2,x3 δx2,x4 − D2

0(x1, x2) δx1,x3 δx1,x4 − D2
0(x1, x3) δx1,x2 δx1,x4 −

−D2
0(x1, x4) δx1,x2 δx1,x3

]

It is straightforward to verify explicitly by expanding r(u, v) in powers of δ/δρ that the

functions D2
0 and D4

0 are the standard impact factors for coupling of two and four gluons

to a dipole projectile. The explicit relation between D4
0 and D2

0 is the same as that of [19].

We stress again that in the derivation of eq. (A.5) it is important to account correctly for

noncommutativity of operators ρa at the same transverse coordinate [41].

To write explicitly the evolution equations for D2 and D4 we use χKLWMIJ in the

dipole limit eq. (3.3) and act with the kernel to the left in eq. (A.3)12 Since χKLWMIJ acts

at most on fourth power of ρ, the nonvanishing contributions come only from expanding

operators r (d− 1) in the interaction part of the kernel to order (δ/δρ)2. The leading large

N contribution of the free part comes from the same order of expansion of r. Thus for the

purpose of the present calculation the dipole creation and annihilation operators are

d†(x, y) =
1

4N

[

δ

δρa(x)
−

δ

δρa(x)

]2

; d(x, y) =
1

N
ρa(x)ρa(y) (A.6)

and the kernel can be written as

χ =
1

4N2

∫

x,y,z

Mx,y,zρ
a(x)ρa(y) × (A.7)

[

2

(

δ

δρb(x)
−

δ

δρb(z)

) (

δ

δρb(y)
−

δ

δρb(z)

)

−
1

4N

(

δ

δρb(x)
−

δ

δρb(z)

)2 (

δ

δρc(y)
−

δ

δρc(z)

)2
]

Now acting with this kernel in eq. (A.3) we obtain

d

dY
D2(x1, x2) =

∫

y1,y2

K(x1, x2; y1, y2)D
2(y1, y2) (A.8)

and

d

dY
D4(x1, x2, x3, x4) =

=

∫

y1,y2

[

K(x1, x2; y1, y2)D
4(y1, y2, x3, x4) + K(x3, x4; y1, y2)D

4(x1, x2, y1, y2)

− V (x1, x2, x3, x4, y1, y2)D
2(y1, y2)

]

(A.9)

12Note that the full KLWMIJ Hamiltonian beyond the dipole limit contains additional terms in the

expansion to fourth order in derivatives. The additional terms however do not contribute when acting on

D2 and D4 as defined above, see [41, 66].
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where K(x1, x2; y1, y2) is the nonforward BFKL kernel and V is the so called three Pomeron

vertex

V (x1, x2, x3, x4, y1, y2) =
1

2

[

M(x1, x3, x2)δy1,x1δy2,x3δx2,x4 + M(x1, x4, x2)δy1,x1δy2,x4δx2,x3

+M(x2, x3, x1)δy1,x2δy2,x3δx1,x4 + M(x2, x4, x1)δy1,x2δy2,x4δx1,x3

]

(A.10)

In eq. (A.10) we have not written explicitly terms proportional to δx1,x2 and/or δx3,x4 since

they vanish when multiplied by the Pomeron eigenfunctions of the dipole model and thus

do not contribute to solution of eq. (A.9), see [19] for discussion.

eq. (A.8) is clearly the BFKL equation. Solution of the nonhomogeneous eq. (A.9) can

be written in the form

D4(Y ) = D4
I (Y ) + D4

R(Y ) (A.11)

Here the irreducible piece D4
I is defined as the solution of eq. (A.9) with initial condition

D4
I (Y = 0) = 0, while the reggeized piece D4

R is defined as the solution of the homogeneous

part of the equation (eq. (A.9) excluding the last vertex piece) with the initial condition

D4
R(Y = 0) = D4

0 . The piece D4
R is precisely the reggeized piece in the standard ter-

minology. Its dependence on energy is that of the single Pomeron exchange rather than

the double Pomeron exchange. The reason is that the initial condition D4
0 of eq. (A.5) is

given by a linear combination of D2
0 due to the fact that the dipole projectile has only two

transverse coordinates. On the other hand the homogeneous part of the evolution equation

eq. (A.9) has the property that it propagates such an initial condition with the BFKL

kernel.

The reason why the reggeized piece appears in the present analysis but does not appear

in the analysis of the dipole model presented in [19] is the following. The authors of [19]

analyzed the equation for the inclusive double dipole density rather than for the four

gluon correlator. The two quantities although similar, are not completely equivalent. In

particular it is obvious that the inclusive double dipole density vanishes in the initial single

dipole state. Thus even though in the large N limit it satisfies the same evolution equation

as the four gluon correlator, the solutions of the two equations differ precisely by the

reggeized piece.

We thus see that our approach reproduces the standard splitting of the gluon four

point function into the irreducible part and the reggeized part at least in the large N limit.

Comparison of this aspect of the two approaches in more general setting is beyond the

scope of this work.

B. Derivation of the eigenvalue equations

In this Appendix we give details of computation of the left hand side of eqs. (4.33, 4.34).

We start by acting with the Hamiltonian H0 on the functions GS (CP ). We begin with

G+ (++) and then repeat the analysis for the function G± (−−). Acting with the ”real” part
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of the Hamiltonian HR
0 we obtain

HR
0 G+(++) = −2K̂u,v,z

{

T ā
aγ [R̃u − R̃z]

γbT ā
ck[R̃v − R̃z]

kd + [R̃u − R̃z]
aβT ā

βb[R̃v − R̃z]
cnT ā

nd

− T ā
aγ [R̃u − R̃z]

γb[R̃v − R̃z]
cnT ā

nd − T ā
cγ [R̃v − R̃z]

γd[R̃u − R̃z]
anT ā

nb

}

P ibd
ac Ψi

s(u, v) (B.1)

Similarly applying the “virtual” Hamiltonian HV
0 gives

HV
0 G+ (++) = (B.2)

= 4

∫

u,v,z
Kv,v,z P i bd

ac Ψi
s(u, v)

{

(T ā T b̄)cd [R̃v − R̃z]
āb̄ − N [R̃v − R̃z]

cd
}

R̃ab(u)

The next step is to differentiate eq. (B.1) and eq. (B.2) with respect to δ
δR̃αβ(x)

δ
δR̃γδ(y)

:

δ

δR̃αβ
x

δ

δR̃γδ
y

HR
0 G+(++) = −

{

T ā
aαT ā

cγP iβδ
ac + T ā

βbT
ā
δdP

ibd
αγ − T ā

aαT ā
δdP

iβd
aγ − T ā

βdT
ā
aγP idδ

αa

}

⊗2

∫

z

[

2Kx,y,zΨ
i
s(x, y) − Kx,z,yΨ

i
s(x, z) − Kz,y,xΨi

s(y, z) + 2δ(x − y)

∫

u

Kz,u,xΨi
s(z, u)

]

= −4N
{

−λiP
iβδ
αγ − (−1)si+sk C̄i

kP kβδ
αγ

}

⊗

∫

z

[

2Kx,y,zΨ
i
s(x, y) − Kx,z,yΨ

i
s(x, z) − Kz,y,xΨi

s(y, z) + 2δ(x − y)

∫

u

Kz,u,xΨi
s(z, u)

]

(B.3)

The last equality follows by using the crossing properties of the projectors eq. (C.18)-

eq. (C.28). The contribution of the virtual part is

δ

δR̃αβ(x)

δ

δR̃γδ(y)
HV

0 G+ (++) = 4
{

(T γ T δ)cd P i βd
αc − N P i βδ

αγ

}

⊗

∫

z

[

(Ky,y,z + Kx,x,z)Ψi
s(x, y) − Kz,z,y Ψi

s(x, z) − Kz,z,x Ψi
s(y, z)

]

= 4N
[

C̄i
k P k − P i

]βδ

αγ

∫

z

[

2Kx,x,z Ψi
s(x, y) − Kz,z,y Ψi

s(x, z) − Kz,z,x Ψi
s(y, z)

]

(B.4)

where again eq. (C.18)-eq. (C.28) were used to get the last equality.

We repeat the same algebra but now applied to the function G± (−−). The “real” and

“virtual” terms read

HR
0 G∓(−−) = −2K̂u,v,z

{

T ā
aγ [R̃u − R̃z]

γbT ā
ck[R̃v − R̃z]

kd + [R̃u − R̃z]
aβT ā

βb[R̃v − R̃z]
cnT ā

nd

− T ā
aγ [R̃u − R̃z]

γb[R̃v − R̃z]
cnT ā

nd − T ā
cγ [R̃v − R̃z]

γd[R̃u − R̃z]
anT ā

nb

}

Z±bd
ac Φ∓(u, v) (B.5)

HV
0 G∓(−−) = 4

∫

u,v,z
Kv,v,zZ

±bd
ac Φ∓(u, v)

{

(T āT b̄)cd[R̃v − R̃z]
āb̄ − N [R̃v − R̃z]

cd
}

R̃ab(u)

(B.6)
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Differentiating eq. (B.5) and eq. (B.6) with respect to δ
δR̃αβ(x)

δ
δR̃γδ(y)

we obtain

δ

δR̃αβ
x

δ

δR̃γδ
y

HR
0 G∓ (−−) =

−
{

T ā
aα T ā

cγ Z±βδ
ac + T ā

βb T ā
δd Z± bd

αγ − T ā
aα T ā

δd Z±βd
aγ − T ā

βd T ā
aγ Z± dδ

αa

}

⊗ 2

∫

z

[

2Kx,y,z Φ∓(x, y) − Kx,z,y Φ∓(x, z) − Kz,y,x Φ∓(z, y)
]

= 2(3∓1)/2 N Z± βδ
αγ

∫

z

[

2Kx,y,zΦ
∓(x, y) − Kx,z,y Φ∓(x, z) − Kz,y,xΦ

∓(y, z)
]

(B.7)

We again rely on the crossing properties of the projectors eq. (C.18)-eq. (C.31). Finally

the contribution of the virtual part is

δ

δR̃αβ
x

δ

δR̃γδ
y

HV
0 G∓ (−−) = 4

{

(T γ T δ)cd Z±βd
αc − N Z± βδ

αγ

}

⊗

∫

z

[

(Ky,y,z + Kx,x,z)Φ∓(x, y) − Kz,z,y Φ∓(x, z) − Kz,z,x Φ∓(z, y)
]

= − 2(3∓1)/2 N Z± βδ
αγ

∫

z

[

2Kx,x,z Φ∓(x, y) − Kz,z,y Φ∓(x, z) − Kz,z,x Φ∓(z, y)
]

(B.8)

The same algebra applied to the function G− (−+) gives (we note that [P 10 −P 10]bdac =
Z− cd

ab )

HR
0 G−(−+) = −2K̂u,v,z

{

T ā
aγ [R̃u − R̃z]

γbT ā
ck[R̃v − R̃z]

kd + [R̃u − R̃z ]
aβT ā

βb[R̃v − R̃z]
cnT ā

nd

− T ā
aγ [R̃u − R̃z]

γb [R̃v − R̃z]
cn T ā

nd − T ā
cγ [R̃v − R̃z]

γd [R̃u − R̃z]
an T ā

nb

}

Z− cd
ab Ψ−

s (u, v)(B.9)

HV
0 G− (−+) = 4

∫

u,v,z

Kv,v,z Z− cd
ab Ψ−

s (u, v)
{

(T ā T b̄)cd [R̃v − R̃z]
āb̄ − N [R̃v − R̃z]

cd
}

R̃ab(u)

(B.10)

Differentiating eq. (B.9) and eq. (B.10) with respect to δ
δR̃αβ(x)

δ
δR̃γδ(y)

we obtain

δ

δR̃αβ
x

δ

δR̃γδ
y

HR
0 G− (−+) = (B.11)

= −
{

T ā
aα T ā

cγ Z− cδ
aβ + T ā

βb T ā
δd Z− γd

αb − T ā
aα T ā

δd Z− γd
aβ − T ā

βd T ā
aγ Z−aδ

αd

}

⊗ 2

∫

z

[

2Kx,y,z Ψ−
s (x, y) − Kx,z,y Ψ−

s (x, z) − Kz,y,x Ψ−
s (z, y)

]

= 2N Z− γδ
αβ

∫

z

[

2Kx,y,zΨ
−
s (x, y) − Kx,z,y Ψ−

s (x, z) − Kz,y,xΨ
−
s (y, z)

+ 2 δ(x − y)

∫

u
Kz,u,x Ψ−

s (z, u)

]

(B.12)
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The contribution of the virtual part is

δ

δR̃αβ
x

δ

δR̃γδ
y

HV
0 G− (−+) = 4

{

(T γ T δ)cd Z− cd
αβ − N Z− γδ

αβ

}

⊗

∫

z

[

(Ky,y,z + Kx,x,z)Ψ−
s (x, y) − Kz,z,y Ψ−

s (x, z) − Kz,z,x Ψ−
s (z, y)

]

= − 2N Z− γδ
αβ

∫

z

[

2Kx,x,z Ψ−
s (x, y) − Kz,z,y Ψ−

s (x, z) − Kz,z,x Ψ−
s (z, y)

]

(B.13)

C. Projectors in SU(N)

In this Appendix for convenience of reference we collected some standard formulae for the

SU(N) group and its representations. In particular throughout our calculations we have

used extensively the decomposition of the product of two adjoint representations into a

direct sum of irreducible representations. We give definitions of the relevant projectors

and summarize their properties. This is taken almost entirely from Ref. [57] and we use

notations of that paper. The same algebra has also been worked out in [74]. For more

details we refer the reader to Refs. [57, 74, 86]. The SU(3) results can also be found in

[11, 76].

The SU(N)-generators in the fundamental representation, ta, a = 1 . . . N2 − 1 define

the familiar f– and d–tensors through

tatb =
1

2N
δab +

1

2

(

dabc + ifabc

)

tc , (C.1)

It follows that

ifabc = 2Tr
(

[ta, tb]tc
)

, dabc = 2Tr
(

{ta, tb}tc
)

. (C.2)

The f and d tensors obey the Jacobi identities

ifkamifmbl − ifkbmifmal = ifabmifkml , (C.3)

fkamdmbl − dkbmfmal = fabmdkml , (C.4)

and summation rules

faijfbij = N δab ,

daijdbij =
N2 − 4

N
δab , (C.5)

faijdbij = 0 .

fiajfjbkfkci = −
N

2
fabc ,

fiajfjbkdkci = −
N

2
dabc

fiajdjbkdkci =
N2 − 4

2N
fabc (C.6)

diajdjbkdkci =
N2 − 12

2N
dabc .
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The SU(N) generators in the adjoint representation T a
bc = −ifabc satisfy standard

commutation relations [T a, T b] = ifabcT
c.

We now consider the product of two adjoint representations of the SU(N) group and

its decomposition into a direct sum of irreducible representations.

(N2 − 1) × (N2 − 1) = 1 + (N2 − 1)A + (N2 − 1)S

+
(N2 − 4)(N2 − 1)

4
+

[(N2 − 4)(N2 − 1)

4

]∗

+
N2(N + 3)(N − 1)

4
+

N2(N − 3)(N + 1)

4
= 1 + 8A + 8S + 10 + 10 + 27 + R7 . (C.7)

We follow the nomenclature of [57] in denoting the representations by their dimensions in

the SU(3) case. The symmetric representation R7 does not exist in SU(3). In Ref. [74]

this representation is denoted as 0.

The SU(N)-projectors into the singlet as well as the two adjoint multiplets have man-

ifestly the same form as their well-known N = 3 counterparts:

P [1]ab
cd =

1

N2 − 1
δabδcd (C.8)

P [8A]ab
cd =

1

N
fabkfkcd =

1

N
ifabkifkdc (C.9)

P [8S ]ab
cd =

N

N2 − 4
dabkdkcd =

N

N2 − 4
[Ds]

ab
cd (C.10)

The projectors onto the antisymmetric 10 and 10 are

P [10]ab
cd =

1

2

(

Aab
cd − P [8A]ab

cd + iY ab
cd

)

P [10]ab
cd =

1

2

(

Aab
cd − P [8A]ab

cd − iY ab
cd

)

. (C.11)

The remaining representations are symmetric and the corresponding projectors are

P [27]ab
cd =

1

2N

(

(N + 2)Sab
cd − (N + 2)(N − 1)P [1]ab

cd

−
1

2
(N − 2)(N + 4)P [8S ]ab

cd +
N

2
([Dt]

ab
cd + [Du]ab

cd)
)

(C.12)

P [R7]
ab
cd =

1

2N

(

(N − 2)Sab
cd + (N − 2)(N + 1)P [1]ab

cd

+
1

2
(N + 2)(N − 4)P [8S ]ab

cd −
N

2
([Dt]

ab
cd + [Du]ab

cd)
)

. (C.13)

The tensors A, Y , S, and D are defined as follows

Sab
cd ≡

1

2

(

δacδbd + δadδbc

)

, Aab
cd ≡

1

2

(

δacδbd − δadδbc

)

. (C.14)

iY ab
cd ≡

i

2

(

dadkfkbc + fadkdkbc

)

(C.15)
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symmetric antisymmetric

Name of rep. 1 8S 27 R7 8A 10 10

Dimension 1 N2
− 1 N2(N+3)(N−1)

4
N2(N−3)(N+1)

4
N2

− 1 (N2
−4)(N2

−1)
4

(N2
−4)(N2

−1)
4

Casimir C2[R] 0 N 2(N + 1) 2(N − 1) N 2N 2N

Table 1: Properties of Multiplets.

[Dt]
ab
cd ≡ dackdkbd , [Du]ab

cd ≡ dadkdkbc , [Ds]
ab
cd ≡ dabkdkcd (C.16)

Apart from the complex, but hermitian structure iYs = Ps[10]−Ps[10], which already

appeared in the decuplet projectors, the full set of color-singlet four-gluon states includes

two more complex hermitian tensor structures

i(Z+
s )ab

cd =
i

2

(

fbakdkcd + dbakfkcd

)

,

i(Z−
s )ab

cd =
i

2

(

fbakdkcd − dbakfkcd

)

. (C.17)

These tensors iZ
(±)
s ”project” onto mixed |8A8S〉–states.

The projectors satisfy the Fierz–type identities:

Pt[Rj ] =

9
∑

i=1

Cj
i Ps[Ri] , (C.18)

where the t–channel projectors are defined as:

Pt[R]ab
cd ≡ Ps[R]ac

bd . (C.19)

The Fierz relations are therefore

P [Rj ]
ac
bd =

9
∑

i=1

Cj
i P [Ri]

ab
cd , (C.20)

with the crossing matrix Cj
i (Fig. 5) is now obtained as

Cj
i =

P [Rj ]
ac
bd · P [Ri]

cd
ab

P [Ri]
ab
cdP [Ri]

cd
ab

=
P [Rj ]

ac
bd · P [Ri]

cd
ab

dim[Ri]
. (C.21)

Note that eq. (C.20) includes all nine tensors (i.e. P and Z±).

Below we present several identities which we found useful.

(T a T c)bd = N λj P [Rj ]
ac
bd (C.22)

where λj is defined as the second line of the matrix C:

λj ≡ C8A

j (C.23)

If Di as the dimension of i-th representation we have

Ci
8A

= λi
Di

D8
(C.24)
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Figure 5: The crossing matrix C.

Name of rep. 1 8A 8S 10 10 27 R7

1 0 1
N2−1

0 0 0 0 0

8A 1 1
4

1
4 0 0 1

N2
1

N2

8S 0 1
4

1
4

1
N2 − 4

1
N2 − 4

0 0

10 0 0 1
4

1
4

1
4

(N + 1) (N − 2)
4 N2

(N − 1) (N + 2)
4 N2

10 0 0 1
4

1
4

1
4

(N + 1) (N − 2)
4 N2

(N − 1) (N + 2)
4 N2

27 0 N +3
4 (N + 1) 0 N + 3

4 (N + 2)
N + 3

4 (N +2)
(N +1)

2 N 0

R7 0 N − 3
4 (N − 1) 0 N − 3

4 (N − 2)
N − 3

4 (N − 2) 0 (N − 1)
2 N

Table 2: Matrix C̄.

It is useful to introduce the matrix C̄ (table 2)

C̄i
k ≡

7
∑

j=1

λj Ci
j Cj

k (C.25)

which obeys
∑

j

(−1)sj λj Dj C̄i
j = (−1)si (−λ2

i + λi/2)Di (C.26)

were we introduced the symmetry index si = s[Ri] via

P i ab
cd = (−1)si P i ba

cd = (−1)si P i ab
dc (C.27)

For symmetric representations si = 0 while for antisymmetric ones si = 1 (table 1). The

matrix C̄ arises when a projector multiplies a product of two matrices T:

P i βd
aγ T ā

αa T ā
dδ = P i βd

aγ N λj P j ad
αδ = N (−1)si P i βd

γa N λj P j ad
αδ = N (−1)si+sk C̄i

k P k βδ
αγ .

(C.28)
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We also have

P k βδ
αγ P i bd

aα T δ
βd T γ

ab = N λi δk,8A Di . (C.29)

We now list some useful properties obeyed by the tensors Z. Under the exchange of

indices they behave as:

Z+ ab
cd = −Z+ cd

ab ; Z− ab
cd = Z− cd

ab ; Z+ ab
cd = Z−ab

dc ; Z+ ab
cd = −Z− ba

cd .

(C.30)

Multiplication properties of Z are

Z±ab
cd P [8A]cdkl = ±

1

2
(Z+ − Z−)ab

kl ;

Z±ab
cd P [8S ]cdkl =

1

2
(Z+ + Z−)ab

kl

Z±ab
cd Z± cd

kl = ∓ (N2 − 4) (P [8A] + P [8S ])ab
kl ;

Z+ab
cd Z− cd

kl = (N2 − 4) (P [8A] − P [8S ])ab
kl

Z+ dδ
αa T ā

aγ T ā
βd = Z− δd

αa N λj P j ad
γβ =

N

2
(P 10 − P 10)δαda λj P j ad

γβ = 0

Z− dδ
αa T ā

aγ T ā
βd = Z+ δd

αa N λj P j ad
γβ = −N Z+ δα

da λj P j ad
γβ = −N Z+ δα

γβ λ8 = −
N

2
Z−βδ

αγ

Z±βδ
αγ P i bd

aα T d
δβ T γ

ab =
N

4
D10 [δi,10 − δi,10] ;

Z±βδ
αγ P i dβ

ca T a
αγ T δ

cd = ±
N

4
D10 [δi,10 − δi,10] (C.31)
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